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ABSTRACT 

 

In this paper, a novel ternary weight convolution neural 

network (TWCNN) is proposed for band selection of 

hyperspectral images. TWCNN constructs deep-wise 

convolution layer with 1×1 filters as the first layer of the 

network, which is used for band selection. In the deep-wise 

convolution layer, weights are constrained to -1, 0, or 1. -1 

and 1 represent that the corresponding band is selected, 

while 0 indicates it’s not. TWCNN constructs subsequent 

layers to extract features and classify for selected spectral 

bands. It combines band selection, feature extraction and 

classification into a unified optimization procedure, which 

makes it to achieve end-to-end band selection and 

classification. Furthermore, the constraints of the number of 

spectral bands is added to the cost function of TWCNN. The 

specific number of spectral bands can be selected. The 

experiment results show that the proposed model provides a 

competitive result to state-of-the-art methods. 

 

Index Terms— hyperspectral images, band selection, 

ternary weight network, convolutional neural network, deep 

learning, classification 

 

1. INTRODUCTION 

 

The high spectral resolution of hyperspectral images 

(HSI) provides abundant information of land cover, which 

makes hyperspectral remote sensing have great potential 

applications in various fields. Although the high spectral 

resolution enriches the feature information, it also leads to 

data redundancy and “Hughes phenomenon”. Data 

redundancy refers to the strong correlation among the 

spectral bands of HSI, especially the adjacent bands.  
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Redundant information increases the computational cost of 

HSI processing. Hughes phenomenon, caused by high-

dimensional spectral bands and limited training samples of 

HSI, deteriorates the classification performance of HSI. 

Therefore, dimensionality reduction of HSI is an important 

step in hyperspectral image processing. 

There are two types of methods to reduce the 

dimensionality of HSI: feature extraction and feature 

selection. Feature selection is to select the most 

discriminative band subset from original spectral bands of 

HSI. Compared with feature extraction, feature selection 

observes the physical information of original spectral bands. 

Feature selection algorithms can be divided into three 

categories: filter, wrapper and embedded. Filter-based 

methods, such as minimum-redundancy maximum-relevancy 

(mRMR) [1] and mutual information and clonal selection 

(MI-CSA) [2], consider an evaluation criterion independent 

of the classifier to search the band subset. The execution 

efficiency of filter-based methods is high, but the 

performance of these methods is limited. Wrapper-based 

methods take the performance of the classifier as the 

criterion to measure the quality of the feature subset directly, 

which take a huge computational cost. Embedded-based 

methods integrate the process of feature selection and 

training of the model, which means the feature selection step 

is completed automatically in the process of model training. 

Recent years, deep learning-based models have made a 

great success in HSI classification, and it was quickly 

applied in the field of band selection. In [3], a deep feature 

selection model with a sparse regularized loss function was 

proposed. It is called elastic net. The main idea of elastic net 

is to add a sparse one-to-one linear layer between the input 

layer and the first hidden layer of multilayer perceptrons. 

Compared with shallow network based methods such as 

LOASS regression [4] and [5], deep networks extract 

nonlinear and abstract high-level features, and can also be 

directly applied to multi-classification tasks. Ying Zhan et al. 

proposed a convolutional neural network (CNN) based 

wrapper approach for HSI band selection, which is named as 

BSCNN+ [6]. Random search strategy based on distance 

density is used to search for band subset 
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Fig. 1 Flowchart of the proposed TWCNN method 

 

in BSCNN+, then the 1D-CNN trained by full-band data is 

used to find the discriminative band combinations for HSI 

classification. 

In this paper, an embedded method based on ternary 

weight CNN (TWCNN) is proposed for HSI band selection. 

In TWCNN, ternary weight network is first applied in 

feature selection. Ternary weight network selects 

discriminative band subset via depth-wise convolution with 

ternary weights. To control the number of selected bands, a 

constraint term is added into the cost function in addition to 

the cost of classification errors. TWCNN completes band 

selection, feature extraction and classification in the process 

of network training. The proposed methods are applied on a 

well-known hyperspectral dataset, and the result shows that 

our method obtains more satisfactory results on HSI band 

selection. 

 

2. THE PROPOSED TWCNN METHOD 

 

In this section, the proposed TWCNN for hyperspectral 

band selection is described. As shown in Fig. 1, the 

proposed TWCNN method is divided into two parts: band 

selection part and classification part. The band selection part 

selects spectral bands via depth-wise convolution, where 

weights are ternarized. Based on selected spectral bands, the 

next part of the network is constituted by CNN with an 

auxiliary classifier. 

 

2.1. Band selection via depth-wise convolution 

 

In the band selection part, the first layer of TWCNN is a 

one-to-one layer which is named as deep-wise convolution 

layer [7]. To preserve spatial information, a pixel region 

with size WH is set as the input of TWCNN network. 

Different to regular convolution layer, a convolution kernel 

of depth-wise convolution corresponds to one channel, and 

one channel is convoluted by only one convolution kernel. 

As is shown in fig. 2, the number of output channels is equal 

to the number of input channels after deep-wise convolution 

operation. Here, the kernel size of each convolution 

operation is 11 without padding, which means the output 

size of the first layer is same to the input size. So, for each 

spectral band 1, {1,2,..., }W H

iB i C    ,where C is the 

total number of spectral bands, there is only one 

parameter 1 1, {1, 2,..., }iw i C  . Deep-wise convolution 

operation with 11 filter is equivalent to multiplying a 

weight by the input for each band. 

We constrain the weights iW  to -1, 0, or 1, where -1 

and 1 represent that the corresponding band is selected, 

while 0 indicates it’s not. Specifically, the weights of the 

first layer are triangulated by a threshold-based ternary 

function as follows: 
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Fig. 2 Deep-wise convolution. W and H indicates the width 

and height of the input block; C is the total number of bands. 

Deep-wise convolution is a one-to-one operation, the 

number 0,1 or -1 on the red arrow shows the weight of every 

deep-wise convolution layer with 11 filter size. 
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2.2. Feature extraction and classification via 

convolutional neural network 

  
The rest of the network is shown as part II in Fig. 1. In this 

part, we proposed a CNN to extract joint spectral–spatial 

features of HSI. The first layer of this part is similar to the 

Inception module [8], which consists of 1 × 1 and 3 × 3 

convolutional filters. The 1 × 1 convolution aims at extract 

spectral information and 3 × 3 aims at extract the spatial 

information of HSI. After 1 × 1 and 3 × 3 convolution 

operation, output of these convolutions are cascaded. The 

rest of the network is stacked by several convolutional layers, 

maxpool layers and fully connected layers. Finally, the 

extracted deep features are fed into a fully connected layer 

with softmax activation. Batch normalization, dropout and l-

2 norm are used in the network to speed up calculation and 

mitigate overfitting. Inspired by GoogleNet [8], we add an 

auxiliary classifier into the middle layer of the network to 

overcome the network gradient dispersion, The Auxiliary 

classifier is used only during the training phase but not in 

testing step. 

 

2.3. Cost function of TWCNN 

 

In TWCNN, a new cost function is defined to combine the 

band selection and classification. Here, a mini-batch update 

strategy is adopted, and cross entropy function OC is used as 

the cost function to measure the classification error: 

1

1
[ log( ) (1 ) log(1 )]

m

O i i i i

i

C x z x z
m =

= − + − −            (2) 

1o aC C C= +                                (3) 

where m denotes the mini-batch size, ix and iz denote the 

truth label and predicted label in the i-th input of the mini-

batch. oC denotes the cost of the auxiliary classifier, and 

1 [0,1]  is the weight of this auxiliary classifier. 

To constrain the number of selected bands, we add a 

constraint term into the cost function C. Then, Equation (3) 

is modified to: 
2

1 2
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where the hyper parameter bn  denotes the number of 

selected bands, | |t

iW denotes the absolute value of 

ternarized weights of the first layer in the network, and 

2 [0,1]   denotes the weight of this constraint term. With 

the training process of the network, the number of selected 

bands will converge to bn  gradually. 

 

2.4. Training the TWCNN with stochastic gradient 

descent 

 

Mini-batch stochastic gradient descent (SGD) is used to 

update the parameters of the proposed network. The 

derivative of the ternary function is zero almost everywhere, 

which makes it apparently incompatible with 

backpropagation. We follow a method similar to that in [9]. 

Ternary-valued weights are used during the forward and 

backward propagations, but not during the parameter update. 

During the process of parameters update, weights are 

updated as full precision weights by SGD. 

 

3. EXPERIMENT 

 

3.1. Dataset descriptions and experimental setup 

 

The Indian Pines data set was collected by Airborne Visible 

Infrared Imaging Spectrometer sensors (AVIRIS) in 1992. 

The scene contains 16 different land-cover classes and the 

image size is 145145. After removing 20 absorbent bands, 

there are 200 bands left. There are 10249 labeled samples in 

the dataset. The labeled samples of the dataset are 

normalized to [0, 1] and divided into test set and training set. 

Specifically, 5% of the labeled samples are randomly 

selected as the training set to train the network, and the 

remaining 95% of the labeled samples are used as the test set 

to evaluate the final performance of the network. The 

performance of all the methods is measured by overall 

accuracy (OA). 

Four typical approach of HSI band selection are 

compared with our proposed method: three filter-based 

methods (MI-CSA [2], mRMR [1] and OPBS [10]), a 

wrapper-based method (BSCNN+ [6]). Support vector 

machine (SVM) with radial basis function (RBF) kernel is 

chosen as the classifier for all the three filter-based methods. 

The parameters C and γ of SVM classifier are determined 

with five-fold cross validation, 

For TWCNN, the size of input spatial neighborhood 

window is set to 1515, the weights 1 and 2  in cost 

function are set to 0.05 and 0.01, respectively. The 

threshold  of the ternary function is set to 0.5. In the 

training phase, the learning rate is initialized to 0.1, and then 

reduce the learning rate by a factor of 0.8 for every 100 

iterations. Note that the weights of the first layer of the 

network are randomly initialized by the uniform distribution 

of (0,1), while other parameters are initialized by the normal 

distribution. 

 

3.2. Classification result analysis 

 

Fig.2 shows the mean overall accuracy of classification as 

the number of selected bands increases from 10 to 100. Each 

experiment was repeated five times to obtain the average 

values. It is shown that the accuracy of the proposed 

TWCNN outperforms that of the other four methods with 

different numbers of selected bands. When the number of 

bands increases, the accuracy of other four algorithms 
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sharply increase, especially in the range of [10-40]. 

TWCNN gets an excellent OA (95.9%) even when the 

number of selected bands is very limited (10 bands). 

Compared with the other algorithms, the classification 

accuracy of TWCNN is much higher. There are two main 

reasons why the performance of our proposed method is 

better than others, one is that TWCNN extracts not only 

spectral but also spatial information, the other is that the 

bands selected by TWCNN is “tailor-made” for the classifier. 

 
Fig. 3 Mean OA values of TWCN, BSCNN+, mRMR, MI-CSA 

and OPBS with different numbers of selected bands on the Indian 

Pines dataset.  

 
Fig. 4. Execution times of TWCN, BSCNN+, mRMR, MI-CSA 

and OPBS. 

 

3.3. Time complexity analysis 

 

Fig. 4 shows the execution time of the five algorithms. 

Here，the execute time includes time for training the model 

and evaluating the capability of the trained models. Note that 

the figure is plotted in exponential coordinates. As the figure 

illustrates, the two approaches based on CNN (TWCNN and 

BSCNN+) take more time than the others. This is because 

deep learning based method takes much time in updating the 

massive parameters of the networks. Compared with 

BSCNN+, TWCNN have lower time cost. That is because 

TWCNN completes band selection during the process of 

training the model, instead of random search which costs 

much computation. 

 

4. CONCLUSION 

 

A novel band selection method based on ternary weight 

convolutional neural network is proposed. Compared with 

traditional HSI band selection approaches, the proposed 

method selects more discriminative band subset by deep 

feature extraction ability of CNN. Compared with the 

existing deep learning based method, the proposed method 

achieves an end-to-end band selection by integrating band 

selection into the cost function of TWCNN. We validated 

our approach on an open hyperspectral dataset and obtained 

the state-of-art classification performance with only 5% of 

original spectral bands.  
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