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Abstract 

Band selection is a research hotspot in hyperspectral image processing. The continuity of the spectral 

bands causes the adjacent bands to be highly correlated, and correlation among long-range bands is 

possible with hundreds of spectral bands. Most existing deep learning methods fail to make full use of 

the inter-band correlation for band selection. In this paper, a novel dual-graph convolutional network 

based on band attention and a sparse constraint is proposed for band selection. The network consists of 

two branches. In the attention branch, band-based dual graphs are constructed to encode the contextual 

correlation of adjacent bands and the structural correlation of long-range bands into non-Euclidean space. 

Subsequently, the graph convolution-based band attention mechanism is devised to aggregate the band 

information in the band-based dual graphs and to generate the attention map for all bands. The band 

attention map is sparsely constrained and embedded as a mask into the trunk branch. In the trunk branch, 

sample-based dual graphs are constructed to represent the topological information of the samples in the 

spectral and spatial domains. Furthermore, a dense graph convolutional network is designed to extract 

and fuse the spatial–spectral and topological features from the shallow to deep layers for classification. 

A soft-shifting optimization strategy is implemented by defining a new loss from full bands and selected 

bands to solve the optimization problem caused by the sparse constraint. In this manner, band selection, 

feature extraction, and classification can be combined into an end-to-end trainable network. The 

experimental results on representative hyperspectral image datasets demonstrate the superiority of the 

proposed method over current state-of-the-art band selection methods. 

 
Key words: Graph convolutional network, Band selection, Hyperspectral image classification, Attention mechanism  

1. Introduction 

In recent years, the rapid development of remote sensing technology has provided strong support for 

exploring and observing the surface space of the earth. As an important branch of the remote sensing 

field, hyperspectral imaging has received increasing attention from researchers. Hyperspectral images 

(HSIs) offer an irreplaceable advantage in land-cover discrimination owing to their high spectral 

resolution. They play a significant role in many fields, such as military [1], astronomy [2], agriculture 

[3], and mineralogy [4]. 

Although the abundant spectral bands of HSIs provide rich information for land-cover discrimination, 

irrelevant and redundant spectral bands limit further applications, such as classification [5] and target 

detection [6]. Therefore, feature selection and feature extraction are considered as crucial steps in HSI 

processing [7]. 

Feature extraction methods can be divided into three categories according to whether the label 

information is used: supervised, unsupervised, and semi-supervised methods. Supervised methods use 

the label information to extract low-dimensional discriminative features by mapping the original high-

dimensional space. Representative methods include linear discriminant analysis [8], local Fisher 

discriminant analysis [9], and supervised Laplacian eigenmaps [10]. Unsupervised methods can 

implement a dimensionality-reduction model without any label information. Principal component 

analysis (PCA) [11] is a widely used unsupervised method and its variants have also been developing 

rapidly. SuperPCA [12] and superpixel kernel PCA [13] have been proposed by introducing superpixel 
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segmentation into PCA-based methods to enable the local spatial information to be used. Recently, 

spectral–spatial and SuperPCA (S3-PCA) [14] was developed to expand the spatial–spectral feature 

extraction capability of Super PCA. Semi-supervised methods use labeled and unlabeled samples 

simultaneously. In [15] and [16], semi-supervised discriminant analysis and semi-supervised local 

discriminant analysis were proposed based on the further development of linear discriminant analysis. 

As a widely applied theory in semi-supervised learning, graph learning theory has also been applied for 

semi-supervised feature extraction, such as semi-supervised graph learning [17] and semi-supervised 

discriminant hypergraph learning [18]. 

Feature selection is known as band selection in HSI processing [19]. The aim of band selection is to 

search for and select the most discriminative or informative spectral bands to represent the overall 

spectral information. In contrast to feature extraction, band selection can maintain the integrity of the 

original band structure and prevent damage to the physical information [20], which makes it more 

appropriate for specific HSI applications. 

Existing band selection methods include three main categories: filter, wrapper, and embedded [21], 

[22]. Filter methods implement feature selection through a pre-designed criterion, which can be regarded 

as the preprocessing procedure that is independent of the chosen classifier [23]. This type of method is 

efficient and can be flexibly combined with various classifiers. However, the pre-designed criterion is 

independent of the chosen classifier, which limits the classification performance. Representative filter 

methods include the minimal-redundancy maximal-relevance (mRMR) framework [24] and hypergraph 

model (HM) [25]. Wrapper methods evaluate the performance of candidate band subsets according to 

their classification abilities under the chosen classifier, which may be the support vector machine (SVM) 

[26], extreme learning machine (ELM) [27], or convolutional neural network (CNN) [28]. In wrapper 

methods, the same type of classifier is used for both the evaluation and classification of the selected 

bands. Thus, wrapper methods are more likely to achieve better classification performance than filter 

methods. However, the classifier in wrapper methods needs to be retrained on each candidate band subset, 

which requires excessive time. Embedded methods embed feature selection into the training of the chosen 

classifier [29], [30]. In embedded methods, the final selected band subset can be obtained while the 

classifier training is completed. Therefore, embedded methods are generally more efficient than wrapper 

methods. Moreover, the combined optimization of band selection and classification enables embedded 

methods to outperform filter methods in most cases. Band selection methods can be divided into 

numerous categories according to different criteria. In addition to filter, wrapper, and embedded division, 

band selection can also be divided into supervised [31], unsupervised [32], and semi-supervised [33] 

methods based on the use of labeled samples. Unsupervised methods can be further divided into 

clustering-based methods [34], [35], [36] and ranking-based methods [37] according to the search 

strategies. 

In the past decade, deep neural network methods have achieved unprecedented progress in a plethora 

of domains. The CNN is one of the most representative deep learning methods [38], which has been 

actively applied in the band selection and classification of HSIs [39]. In several early applications for 

band selection, CNN was employed as the classifier and the search for candidate bands was performed 

by traditional methods [28]. With the extension of related research, CNNs have been used in embedded 

methods by producing sparse weights to determine the selected bands [40], [41]. Although many existing 

deep learning methods have been proposed for HSI band selection, several problems remain that have 

not been solved effectively, as follows: 1) Most deep learning-based methods fail to integrate the non-

local correlation among all spectral bands, which may reduce the evaluation effectiveness of the band 

weights and result in a loss of discriminative bands. 2) These methods make the network parameters 

sparse to remove the redundant and noisy bands by using threshold-based functions or regularization 

terms, which may lead to an intractable optimization problem. 3) The performance of deep learning 

methods is strongly dependent on the quantity of the training samples. Furthermore, the contradiction 

between limited training samples in HSIs and the sample requirements of deep learning methods restricts 

the band selection performance. 

In recent years, the graph convolutional network (GCN) [42] was proposed to deal with non-Euclidean 

structure data effectively by modeling the correlations among samples, which enables the GCN to 

overcome the limitation of the fixed receptive field in the CNN. Owing to its flexible feature extraction 

ability, the GCN has been successfully applied in HSI classification, such as multi-scale dynamic GCN 

[43], miniGCN [44], and context-aware GCN [45]. In [44], miniGCN was proposed by using minibatch 

samples to reduce the computational cost, which is effective for dealing with large graphs. In existing 

GCN-based HSI classification methods, the correlation among samples in the local and global regions 
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has been modeled effectively. However, learning the correlation among bands with GCN requires further 

investigation. 

In this paper, a new dual-GCN based on band attention and sparse constraint (BSD-GCN) is proposed 

for the band selection of HSIs. The BSD-GCN consists of an attention branch and a trunk branch. In the 

attention branch, band-based spatial and spectral graphs are constructed using both labeled and unlabeled 

samples in non-Euclidean space. Graph convolution is implemented to extract the information of adjacent 

and long-range correlated spectral bands in this non-Euclidean space effectively. The band attention 

mechanism aggregates and propagates the band information to generate the band attention map 

automatically. This attention map is sparsely constrained by maintaining the top weights and forcing the 

remaining weights to zero so as to remove the noisy and redundant bands. Subsequently, it is expanded 

into a column sparse mask and inserted into the first layer of the trunk branch. In the trunk branch, 

sample-based spatial and spectral graphs are established according to the sparse attention map. Several 

spatial–spectral graph convolution modules are stacked in the trunk branch with dense connections, 

which fuses the spatial–spectral and topological features from different layers for classification. Soft-

shifting optimization is implemented to update these bands with the assistance of all spectral bands to 

solve the problem of several unselected bands not being updated owing to the sparse constraint. 

The main contributions in this paper are listed as follows: 

⚫ The BSD-GCN can make full use of the local and non-local correlations among spectral bands by 

constructing two types of band-based graphs and aggregating the band information with the 

topological structure. This provides a more comprehensive evaluation of the weight of each spectral 

band.  

⚫ A new soft-shifting optimization method is devised to solve the optimization problem caused by 

the sparsity of the band selection. It provides the gradients for updating the parameters of unselected 

bands with the loss of the full bands and results in optimizing band selection, feature extraction, 

and classification in an end-to-end, trainable process. 

⚫ To alleviate the contradiction between limited samples and deep learning model requirements, 

semi-supervised graph construction is implemented by leveraging limited labeled samples and 

numerous unlabeled samples. The samples are divided into different mini batches for graph 

construction and network training to further improve the efficiency and generalization ability. 

2. Related Work 

In this section, we introduce the three above-mentioned categories of band selection methods in detail 

and address deep learning-based methods in a separate paragraph to provide a comprehensive 

understanding. 

Filter methods: The key to filter methods is the design of the evaluation criterion. Peng et al. [24] 

proposed the mRMR to maximize the dependency of the features with the target classes and to minimize 

the redundancy among features. In fact, only the redundancy that is correlated with the target classes 

needs to be minimized for the classification task. In [46], an adaptive subspace partition strategy was 

designed to divide all of the spectral bands into partitions gradually, according to the interclass and 

intraclass distances. Thereafter, candidate bands with minimal noise were selected in each partition. 

These two methods are efficient in selecting the band subset. In [25], the HM was proposed by 

establishing a hypergraph based on the spatial and spectral information of the samples. The band 

selection of HSIs is formalized as a sparse group-constrained linear regression problem on the 

hypergraph. The HM can use additional spatial–spectral information of HSIs, which is helpful for band 

selection. However, the construction of a hypergraph is very time consuming. 

Wrapper methods: In [27], the band selection of HSIs was converted into the dynamic selection of 

ELM classifiers, which is abbreviated as DCS. In DCS, pseudo-labels are produced for the unlabeled 

samples. Thereafter, the band subset with the best classifier is selected using both the real and pseudo-

labels. Although an ELM classifier can be trained rapidly, numerous classifiers cause DCS to require a 

long time in the training phase. In [26], feature selection was implemented using fractional-order 

Darwinian particle swarm optimization (FODPSO) and the SVM. In FODPSO, the classification result 

of the SVM is used as its fitness value. FODPSO enables this model to select the most discriminative 

bands automatically. 

Embedded methods: Embedded methods usually combine band selection and classification in one 

process. In [29], a SVM based on recursive feature elimination (RFE-SVM) was proposed by maximizing 

the SVM margin in a sequential backward selection manner. Subsequently, a modified recursive SVM 
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(MR-SVM) [30] was proposed based on the RFE-SVM, which eliminates the features by considering the 

mean values of the features from different classes. 

Deep learning methods: Owing to the powerful feature learning ability, deep learning-based methods 

have received increasing attention in the band selection field. In [19], an unsupervised CNN-based 

method was designed to transform band selection into a spectral reconstruction task. In [28], the self-

improving CNN (SICNN) was proposed, which uses FODPSO to search the band subsets and uses a 

CNN as the evaluator for candidate band subsets in FODPSO. In SICNN, although the CNN can evaluate 

the performance of the band subsets effectively, it needs to be well trained for each candidate band subset, 

which is time consuming. To accelerate the band selection, another CNN based on distance density 

(DDCNN) was proposed [47]. In DDCNN, a one-dimensional CNN (1DCNN) is well trained with full-

band HSI data. Thereafter, the distance density among all of the spectral bands is measured to select the 

candidate band subsets, which are evaluated using the well-trained 1DCNN without retraining. The 

DDCNN avoids the time of retraining, but it is difficult for the fixed 1DCNN in the DDCNN to evaluate 

all the different band subsets effectively. In [40], a ternary weight CNN (TWCNN) used the ternary 

weight in a depth-wise convolution layer to determine whether or not each band was selected. The 

subsequent convolution layers extracted the features of the HSI data with the selected bands. The 

prosperity in this field has encouraged more innovative ideas to break through the bottleneck of band 

selection, such as reinforcement learning [48] and the attention mechanism [49], [41]. In [49], an 

attention-based CNN (ABCNN) was applied to explore the most informative bands with one-dimensional 

convolution. The ultimate band selection was modeled as an anomaly detection process. As the ultimate 

band selection process is separate from the classification network, the ABCNN may easily lose 

discriminative bands. In [41], another 2DCNN-based band attention method was proposed to learn the 

weight of each band in the HSIs. Thereafter, band selection was implemented by setting the weights of 

the unselected spectral bands to zero. The band attention network was optimized by ignoring the problem 

whereby unselected bands may not be updated, which restricts the selection of discriminative band 

subsets. 

3. Background of Graph Convolutional Network 

Graph neural networks (GNNs) [50] have been proven to be a powerful tool in handling non-Euclidean 

data, such as molecular properties [51] and social influence prediction [52]. With the introduction of the 

convolution operator into GNNs, convolutional GNNs have significantly promoted the development of 

GNNs. This approach covers two categories: spectral-based and spatial-based. As a representative 

spectral-based method, the GCN has received increasing attention owing to its efficiency and simplicity. 

Spectral methods play an important role in the graph signal processing field because of their rigorous 

mathematical basis [53]. Given a signal nRx  on an undirected graph { ,  }G V E= , ix  is the i -th 

node, and V , E  refer to the sets of nodes and edges. The normalized Laplacian matrix can be used as 

a representation of the graph G , which is defined as: 

 
n

− −

= −
1 1

2 2L I D AD
 (1) 

where 
nI  is the identity matrix, A  is the adjacency matrix of graph G , and D  is the degree matrix 

calculated by D Aii ijj
= . The spectral graph convolution of x  with filter ( )diag=

θ
g θ (

nRθ ) 

can be defined as follows:  
 T

G =
θ θ

x g Ug U x  
(2)

 

where 
n nR U  is the eigenvector matrix of L , which is decomposed by L UΛU

T= , and Λ  is a 

diagonal matrix that is composed of eigenvalues of L . The basic concept of (2) is to multiply the graph 

Fourier transform results of the signal and filter, and subsequently, to use an inverse transform to obtain 

the graph convolution result. Interested readers can refer to [54] for a detailed derivation and analysis. 

Although the above formula can realize spectral graph convolution, the high computational cost caused 

by the eigenvalue decomposition limits its practical application. In [55], ChebNet was proposed to 

approximate 
θ

g  with K-order Chebyshev polynomials. In 2017, the GCN [42] was proposed by further 

simplifying the assumptions on 
θ

g , and providing a simple and efficient graph convolution application. 

In the GCN, (2) becomes: 

 
G n

− − 
 = + 

 

1 1

2 2
θx g θ I D AD x  (3) 
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Based on (3), the propagation rule in the GCN is defined as: 

  
( )

( )

1 +1

1 1

2 2

H AH W

A D I A D

l l l

n

o+

− −

=

= +

 (4) 

where l
H  and +1

H
l  represent the input and output of the +1l -th layer, +1

W
l  denotes the learnable 

parameters, ( )ii n ijj
= +D I A , and ( )o   refers to the activation function. Equation (4) is the widely 

used graph convolution operation in the GCN and many GCN-based applications. It avoids complicated 

eigenvalue decomposition and significantly reduces the difficulty of deploying graph convolution. A 

visual example of graph convolution in a GCN is presented in Fig. 1 for an improved understanding of 

the graph convolution operation. 

Fig. 1 depicts a five-node graph, in which each node is connected to numerous other nodes. When 

node  is convolved, the features of node  and its neighbor nodes  and  are summed and 

mapped into . The other nodes are handled using the same concept. In this paper, this convolution 

operator is used to perform the band selection task. 

4. Proposed BSD-GCN Method 

The GCN can aggregate feature information from the nodes in neighborhoods and model long-range 

spatial correlations. Inspired by the GCN, an improved method, BSD-GCN, is proposed for the band 

selection of HSIs. The architecture of the BSD-GCN is illustrated in Fig. 2. As shown in Fig. 2, BSD-

GCN constructs two branches: an attention branch for band selection, and a trunk branch for feature 

extraction and classification. The band-based and sample-based spatial and spectral graphs are 

constructed using the training samples from HSIs. The band-based spatial and spectral graphs are input 

into the attention branch, in which a dual-graph convolutional layer and an average pooling layer are 

stacked. An attention map is obtained after the average pooling layer. The attention map is sparsely 

constrained to remove redundant and noisy bands. In the trunk branch, the sample-based spatial and 

spectral graphs, which are constructed under the guidance of the sparse attention map, are used as the 

input. The trunk branch is composed of five densely connected spatial–spectral graph convolution 

modules. Each module is a dual-graph convolutional layer that extracts the spatial–spectral features for 

classification. Subsequently, the sparse attention map is multiplied into the input of the trunk branch to 

eliminate the values of the unselected bands. Finally, soft-shifting optimization is implemented to 

integrate the band selection, feature extraction, and classification processes in an end-to-end manner. 

4.1. Band-Based and Sample-Based Dual-Graph Construction in HSIs 

HSIs contain abundant information in the spectral and spatial domains simultaneously. In the spectral 

domain of HSIs, numerous spectral bands are acquired through dense sampling from the visible spectrum 

to the infrared spectrum. This mechanism not only leads to a high correlation between adjacent spectral 

bands, but also makes it possible for distant spectral bands to be relevant. In the spatial domain of HSIs, 

the samples that are located in the local region have a higher probability of belonging to the same category. 

However, samples in the same category may be distributed in various regions. 

To make full use of the spatial–spectral characteristics of HSIs, two types of dual graphs are 

constructed in the BSD-GCN with the bands and samples as the nodes. In the band-based dual graphs, 

one of the graphs encodes the location correlation between the bands and the other represents the spectral 

1x 1x 2x 5x

1z

x1

x3
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Fig. 1 Visual example of convolution operation on graph. 
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similarity among the bands. In the sample-based dual graphs, one of the graphs reflects the spatial 

contextual correlation of the samples and the other expresses the spectral similarity among the samples. 

In the HSIs, the training set is defined as  1 2

tr tr tr tr

N, ,...,=X x x x . Each sample is a spectral vector of 

length B , where B  is the number of spectral bands. The training set contains labeled and unlabeled 

samples. Inspired by miniGCN [26], minibatch learning is used in the BSD-GCN to reduce the 

computation and storage costs of large-scale graphs. A minibatch of labeled and unlabeled samples from 

the training samples are randomly selected as the input data. These samples are denoted by 

 1 2 N
, ,...,=X x x x , where N is the number of samples in the current batch. 

1) Band-based spatial and spectral graph construction: { , }band spa band band spaG V Ε− −=  and 

{ , }band spe band band speG V Ε− −=   refer to the band-based spatial and spectral graphs, respectively, where 

bandV represents the set of band nodes, and band spaE − and band speE − represent the edge sets that are defined 

by the band position and spectral values. In 
band spaG −

 and 
band speG −

, each band is regarded as a node.
band spa−

A  and band spe−
A are the corresponding adjacency matrices, which are calculated by: 

 
( )exp - , if 

0,                  otherwise

band spa

ij

i j i j
−

 − 
= 


A  (5) 

 
( )

2

1

1
exp , if 

0,                                         otherwise

N
i j

e eband spe
eij

i j
N

−
=

  
  − − 

 =   



 x x
Α  (6) 

where band spa

ij

−
A

 
and band spe

ij

−
A  represent the similarity of the i -th and j -th spectral bands, 

respectively, with 1 ,i j B  . As indicated in (5), when the positions of the i -th and j -th bands are 

closer, the value of band spa

ij

−
A

 
is closer to 1; otherwise, band spa

ij

−
A  tends to 0. In (6), the spectral 

information is used to measure the similarity between the i -th and j -th bands, and i

ex  and j

ex  

refer to the spectral values of the i -th and j -th bands in the e -th sample, respectively. To ensure that 

the similarity values are in the same range, a simplified version of the Gaussian kernel function mapping 

is used in A
band spa−

and A
band spe−

. 

2) Sample-based spatial and spectral graph construction: HSIs often have varied and complex 

land-cover distributions. Hence, sample-based dual graphs are designed to encode the local spatial and 

non-local spectral information. In the sample-based dual graphs, each sample is regarded as a node. 

Similarly, the sample-based spatial graph and spectral graph are denoted by 

{ , }sample spa sample sample spaG V Ε− −=  and { , }sample spe sample sample speG V Ε− −= , where sampleV  represents the set 

of sample nodes, and sample spaE −  and sample speE −  represent the edge sets that are defined by the spatial 

information and spectral values of the samples. The adjacency matrices A
sample spa−  and A

sample spe−  are 

calculated as follows: 

 
( )1,  0 dis ,  

0,   otherwise

i jsample spa

ij


−

  
= 


x x
A  (7) 
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Fig. 2 Architecture of proposed BSD-GCN method. 
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2

1

1
exp ( ) ,  if  

0,                                          otherwise

b b

k
s s

i jsample spe
bij

i j
k

−
=

  
− −   
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


 x x
A  (8) 

where 
sample spa

ij

−
A  and 

sample spe

ij

−
A  measure the similarity between the samples, with 1 ,i j N  , and 

( )dis ,i jx x  represents the Euclidean distance between the two sample locations in the HSIs. 

Furthermore,   is a threshold and 20 = , which controls whether the samples in the sample-based 

spatial graph are connected.   is selected by a trial-and-error procedure in the candidate range of [4, 

24] with an interval of 2. If the threshold   is too small, the spatial relationship between the samples 

may not be fully utilized. In contrast, if the threshold   is too large, some unrelated samples may be 

connected. Eventually,   was set to 20 in our experiments. It can be observed that the elements of the 

similarity matrices are nonzero unless the two corresponding samples are sufficiently close. To obtain a 

more accurate representation, the current k  selected bands are used to evaluate the spectral similarity 

between the samples. bs  is the index of the b -th selected band. 

4.2. Band Selection with GCN-Based Attention Mechanism and Sparse Constraint 

HSIs have abundant spectral bands and high spectral resolution, which provide sufficient information 

for land-cover classification. However, a large number of spectral bands will result in high computational 

pressure and many spectral bands with noise or redundant information may be included. These spectral 

bands may lead to a deterioration in the classification performance. To alleviate this problem, band 

selection methods aim to retain the most discriminative or informative bands from the original spectral 

bands. 
In the BSD-GCN, an attention branch that is based on dual-graph convolution and sparse constraint is 

designed to achieve the band selection of HSIs. The structure of the attention branch of the BSD-GCN 

is depicted in Fig. 3. The band-based dual graphs are used as the input for the attention branch of the 

BSD-GCN. Dual-graph convolution with batch normalization extracts and integrates the features from 

the band-based graphs. Subsequently, the band attention map is produced using average pooling and 

mapping with the softmax activation function. Each weight of the band attention map is regarded as the 

measurement of the importance of the corresponding band. To remove the redundant and noisy bands, 

the weights of the band attention map are truncated to make them sparse. Finally, the sparse band 

attention map is used as a mask and inserted into the first layer of the truck branch of the BSD-GCN. 

In the attention branch, the band-based graphs band spaG −  and band speG −  are input as the spatial and 

spectral information representations of all spectral bands, respectively. The dual-graph convolution is 

implemented on the two input graphs and the corresponding band maps are produced. The dual-graph 

convolution aggregates the features of each band and its correlated bands, and transforms the aggregated 

features into a new feature space. These feature maps are fused using the element-wise addition operation 

as the output feature map F . Thereafter, average pooling is applied to each row of the feature map F . 

Each row of the feature map F  can be considered as a descriptor of each corresponding band of the 

HSIs. The band attention map g  is generated by mapping the pooled feature map with the softmax 

activation function. Thus, the elements in the band attention map g  are constrained between 0 and 1. 

This process is calculated as follows:  

 softmax( ( ))AP=g F  (9) 

 
( )

( )

band spe band spe band spe

band spa band spa band spa

f

f

− − −

− − −

= +

+ +

F A XW b

A XW b
 (10) 

where 
band spe−

A and 
band spa−

A are the normalized matrices of band spe−
A and band spa−

A , respectively, 

whereas band spe−
W , band spa−

W , band spe−
b , and aband sp−

b  are learnable parameters. ( )f  is the rectified 

linear unit (ReLU) function and ( )AP   refers to the average pooling for each row of the input. 

The band attention map can be regarded as the evaluation of each corresponding spectral band. A 

smaller weight of the band attention map indicates that the corresponding band is more likely to be noisy 

or irrelevant. The band attention map is sparsely constrained to retain the discriminative bands, and to 

suppress the noisy and irrelevant bands. The sparse band attention map m  is obtained by selecting the 

top k  larger attention weights after ranking and setting the remaining weights to zero, which is 

formulated as: 
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 ( )
( ),  if  sort 1

0,   otherwise

i i

i top i

,k
f

  +
= = 



g g g
m g  (11) 

where mi  and ig  refer to the i -th elements of vectors m  and g , and k  is the number of selected 

bands. Moreover, sort( , 1)g k +  represents the operation of sorting the input vector g  in descending 

order and selecting the top 1k +  value, whereas ( )topf   represents the constraint function. 

To allocate sparse attention weights to emphasize or suppress the corresponding spectral bands, the 

sparse attention map is first expanded and transformed from the vector to the matrix. Subsequently, the 

sparse attention matrix is inserted as a mask into the first layer of the truck branch. Finally, after using 

the mask, the input data of the trunk branch contains only the selected spectral bands. Specifically, the 

original sparse attention map m  is a column vector. It is expanded to a mask matrix by multiplying a 

row vector in which all elements are 1, which is formulated as: 

 ( )M m l
T

=  (12) 

where  represents the matrix multiplication and l  is a row vector of size N  in which all elements 

are 1. The mask matrix M  is subsequently embedded as follows:  

 X X M
T =   (13) 

In (13), the input data with selected bands X  are acquired using element-wise multiplication with the 

mask matrix M , which is used as the input for the trunk branch of the BSD-GCN. 

4.3. Spatial–Spectral Classification based on Dense GCN with Selected Bands 

Owing to the imaging mechanism of HSIs, it is possible for certain samples with different spectral 

signatures to belong to the same category, whereas samples with similar spectral signatures may belong 

to different categories. In recent years, spatial–spectral classification has become a new trend in HSI 

processing. In the trunk branch of the BSD-GCN, a dense GCN is constructed for the spatial–spectral 

classification of HSIs, whereby spatial–spectral graph convolution modules are designed to extract the 

local spatial and non-local spectral features simultaneously. Sample-based spatial and spectral graphs are 

input into the spatial–spectral graph convolution module. If the sample-based spectral graph is 

constructed using all spectral bands of the HSIs, this graph may not be sufficiently accurate because of 

several redundant and noisy spectral bands. Thus, the sample-based spectral graph is constructed using 

only the selected bands that are generated by the attention branch of the BSD-GCN.  

In the spatial–spectral graph convolution module, the sample-based dual graph models the spatial and 

spectral correlations among the samples into a topological structure. In this manner, the dual-graph 

convolutional layer can extract the spatial–spectral and topological features. In the trunk branch of the 

BSD-GCN, the spatial–spectral graph convolution module is stacked layer by layer to promote the 

classification performance. However, the stacking of excessive layers may result in degraded 

performance owing to the gradient vanishing problem [56]. Drawing on the concepts of CNNs, skip 

connections [57] are introduced into the GCN to alleviate this problem. Inspired by this idea, dense 

connections are applied to enhance the reuse of features and to exploit the information flow from the 

shallow to deep layers. This enables the BSD-GCN with multiple layers to converge reliably and achieve 

superior performance. 

The specific structure of the trunk branch of the BSD-GCN is depicted in Fig. 4. The sample-based 
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spatial graph 
sample spaG −

 and spectral graph 
sample speG −

 are used as the input. Five spatial–spectral graph 

convolution modules are stacked with dense connections. Each spatial–spectral graph convolution 

module contains a dual-graph convolution layer based on the sample-based spatial graph and spectral 

graph. Among the five spatial–spectral graph convolution modules, the feature map that is generated by 

the current module is added to that of each subsequent module. Following five densely connected 

modules, the generated feature map is input into the softmax classification layer to predict the class labels. 

The 1l + -th spatial–spectral graph convolution module in the trunk branch of the BSD-GCN is 

calculated as follows: 

 

1 1 1

1 1

1

1 1

2 2
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sample spa

l i l l
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l
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i l l

i
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  
= +  
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  
+  

  





H A H W b

A H W b

 (14) 

where 1
H

l+  and Η
i  are the feature maps of the 1l + -th and i -th layers, respectively. Furthermore, 

0
H X = . ,

1

1

l+
W ,

1

1

l+
b , 

1

2

l+
W  and 

1

2

l+
b are the learnable parameters in the 1l + -th layer, whereas 

sample spa−

A  and sample spe−

A  are the normalized adjacency matrices of A
sample spa−  and A

sample spe− , 

respectively. 

4.4. Soft-Shifting Optimization of BSD-GCN 

In the BSD-GCN, the attention branch integrates the band information to produce a sparse attention 

map of bands and the trunk branch extracts the features of the HSI data with the selected bands for 

classification. The embedding of the sparse attention map into the trunk branch bridges the gap between 

the two branches with the aim of achieving end-to-end learning. However, the sparse constraint results 

in an optimization problem. In the back-propagation of the attention branch, the gradients will be zero 

for updating the neurons corresponding to the unselected bands, which limits the model to gradually 

search for the appropriate subsets among all spectral bands.  

To solve this problem, soft-shifting optimization is implemented to update the parameters in the BSD-

GCN. Soft-shifting optimization involves two losses: the full band loss and selected band loss. In soft-

shifting optimization, the attention maps before and after the sparse constraint are embedded into the 

same trunk branch to produce these two losses. The neurons corresponding to the unselected bands can 

be updated with the full band loss, which alleviates the optimization difficulty caused by the sparse 

constraint. Moreover, an adjusted factor is applied to combine the two losses and make soft-shifting on 

the focus of the optimization. 

As described previously, the gradients of the unselected bands are zero during the iteration process. 

Specifically, let P
m  represent the ultimate classification probability matrix that is produced by the trunk 

branch, which can be regarded as a variable relating to the constraint function ( )topf  . This is formulated 

as follows: 
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( )( )

( )( )( )

softmax F ,

     softmax F ,

m

trunk

trunk topf

=

=

P m X

g X

  (15) 

 
( ) ( )1,  if    sort , 1

0, otherwise

top i i

i

f k   +
= 

 

g g g

g
 (16) 

where ( )F ,m Xtrunk
 refers to the feature extraction process in the trunk branch with the sparse attention 

map. It can be observed from (16) that the derivative of ( )topf   for the unselected bands is always zero, 

which may invalidate the traditional gradient descent algorithm. 

In the BSD-GCN, the soft-shifting optimization also embeds the attention map g  before the sparse 

constraint into the truck branch. The loss ssL  in the soft-shifting optimization consists of two terms: 
mL  and 

gL , which refer to the selected band loss with the sparse attention map m  and full band loss 

with the non-sparse attention map g , respectively. ssL  is defined as follows: 

 m g

ssL L L= +  (17) 

where   is the adjusted factor between these two losses 
mL  and 

gL , and exp( )
t

T
 = − . 

Furthermore, t  and T  indicate the current number of epochs and total number of epochs, respectively. 

In the early epochs, the sparse attention map is gradually updated to seek more discriminative bands, 

which requires more assistance of the full band loss. Following hundreds of epochs, the selected bands 

tend to be stable. In this case, the BSD-GCN needs to focus increasingly on feature extraction and 

classification with the selected bands. Therefore,   decreases with the increase in t  and makes soft-

shifting on the focus of the optimization from the full band loss to selected band loss.  

The specific calculations of these two losses are expressed as follows: 

 
1

log
C

m m

ij ij

i Z j

L
 =

= −Y P  (18) 

 
1

log
C

g g

ij ij

i Z j

L
 =

= −Y P  (19) 

TABLE I 

PROCEDURE OF BSD-GCN 

INPUT: Training set X
tr ; training label set Y ; number of selected bands k , number of training 

epochs T ; 

OUTPUT: Predicted labels of test samples and indices of selected bands. 

Begin: 

Training of BSD-GCN 

1: for every epoch t T : 

2: Randomly select partial samples to be X  

3: Calculate the band-based adjacency matrices band spa−
A  and band spe−

A  with X  using 

equations (5) and (6) 

4: Calculate the attention map g  using equations (9) and (10) 

5: Calculate the sparse attention map m  and embed m  into the trunk branch using 

equations (11) to (13) 

6: Calculate the sample-based adjacency matrices sample spa−
A  and sample spe−

A  using X
with selected bands using equations (7) and (8) 

7: Calculate the soft-shifting loss 
ssL with g  and m  using equations (15) and (17) to 

(20) 
8: Update the parameters in the BSD-GCN with gradient descent 

9: 1t t= +  

10: end for 

Test of BSD-GCN: 

11: Predict the samples in test set test
X  using well-trained BSD-GCN 

12: Output the predicted labels of the test samples and the indices of the selected bands 

End 
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 ( )( )softmax F ,g

trunk=P g X  (20) 

where C is the number of classes, Z  refers to the index set of labeled training samples in the current 

batch, 
g

P  is the classification probability matrix that is produced by the truck branch with the non-

sparse attention map g , and 
ijY  refers to the value of the i -th row and j -th column in the training 

label set Y , which is equal to 1 if the i -th sample belongs to the j -th class and 0 otherwise.  

By using soft-shifting optimization, the BSD-GCN can optimize the band selection and classification 

in an end-to-end manner. The detailed procedure of the BSD-GCN is summarized in Table I.  

5. Experimental Results and Analysis 

Three widely used HSI datasets were selected to investigate the performance of the proposed BSD-

GCN method. A detailed description of the three datasets is provided in Section 5.1. The experimental 

settings, including the experimental conditions, comparison methods, and hyperparameter fine-tuning, 

are presented in Section 5.2. Sections 5.3-5.7 provide an analysis of the experimental results according 

to different aspects: the classification results, time consumption, sensitivity to the number of selected 
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Fig. 5. False-color composite images and ground truth of three datasets: (a) Indian Pines, (b) Pavia University, and (c) 
University of Houston. The legends with different colors indicate different classes.  
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bands, selected spectral bands, and influence of different proportions of training samples. Sections 5.8 

and 5.9 describe the use of an additional HSI dataset and state-of-the-art dimensionality reduction 

methods to verify the effectiveness of the BSD-GCN. Sections 5.10 and 5.11 present an analysis of the 

influence of the components and hyperparameters in the BSD-GCN.  

5.1. Data Description 

Three benchmark datasets were used in the experiments. Tables II-IV display the numbers of labeled 

and unlabeled training samples, and the test samples of each class in the three datasets.  

1) Indian Pines: This dataset was acquired by the airborne visible/infrared imaging spectrometer 

sensor in 1992, recording the scene of northwestern Indiana, USA. It was provided by Marion F. 

Baumgardner, Larry L. Biehl, and David A. Landgrebe, Purdue University. This dataset consists of 145 

× 145 pixels and 220 spectral bands. The spatial resolution of this dataset is 20 m, and the wavelength 

TABLE II 

DIFFERENT CLASSES AND NUMBERS OF LABELED TRAINING, UNLABELED TRAINING, AND TEST SAMPLES IN THE INDIAN PINES 

DATASET 

# Class Labeled Unlabeled Test 

1 Alfalfa 3 6 37 

2 Corn-notill 72 144 1212 
3 Corn-mintill 42 84 704 

4 Corn 12 24 201 

5 Grass-pasture 25 50 408 
6 Grass-trees 37 74 619 

7 Grass-pasture-mowed 2 4 22 

8 Hay-windrowed 24 48 406 
9 Oats 1 2 17 

10 Soybean-notill 49 98 825 
11 Soybean-mintill 123 246 2086 

12 Soybean-clean 30 60 503 

13 Wheat 11 22 172 
14 Woods 64 128 1073 

15 Buildings-Grass-Trees-Drives 20 40 326 

16 Stone-Steel-Towers 5 10 78 

Total 520 1040 8689 

 TABLE III 

DIFFERENT CLASSES AND NUMBERS OF LABELED TRAINING, UNLABELED TRAINING, AND TEST SAMPLES IN THE PAVIA 

UNIVERSITY DATASET 

# Class Labeled Unlabeled Test 

1 Asphalt 199 398 6034 
2 Meadows 560 1120 16969 

3 Gravel 63 126 1910 

4 Trees 92 184 2788 
5 Painted metal sheets 41 82 1222 

6 Bare Soil 151 302 4576 

7 Bitumen 40 80 1210 
8 Self-Blocking Bricks 111 222 3349 

9 Shadows 29 58 860 

Total 1286 2572 38918 

 
TABLE IV 

DIFFERENT CLASSES AND NUMBERS OF LABELED TRAINING, UNLABELED TRAINING, AND TEST SAMPLES IN THE UNIVERSITY OF 

HOUSTON DATASET 

# Class Labeled Unlabeled Test 

1 Grass_healthy 63 126 1062 

2 Grass_stressed 63 126 1065 

3 Grass_synthetic 35 70 592 
4 Tree 63 126 1055 

5 Soil 63 126 1053 

6 Water 17 34 274 
7 Residential 64 128 1076 

8 Commercial 63 126 1055 
9 Road 63 126 1063 

10 Highway 62 124 1041 

11 Railway 62 124 1049 
12 Parking_lot1 62 124 1047 

13 Parking_lot2 24 48 397 

14 Tennis_court 22 44 362 
15 Running_track 34 68 558 

Total 760 1520 12749 
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ranges from 400 to 2500 nm with a spectral resolution of 10 nm. After removing 20 water absorption 

and noisy bands, namely [104-108], [150-163], and 220, the remaining 200 bands are used in practice. 

This scene contains 16 land-cover classes. Fig. 5(a) depicts the false-color image consisting of bands 50, 

27, and 17 of the Indian Pines dataset and the ground truth. For this dataset, 5% and 10% of the labeled 

samples are randomly selected as the labeled and unlabeled training sets, respectively. The remaining 

labeled samples are used for testing. This dataset can be obtained on the website http://cobweb.ecn.p-

urdue.edu/∼biehl/MultiSpec/ documentation.html. 

2) Pavia University: This dataset was gathered by the Reflective Optical System Imaging 

Spectrometer in 2003 over Pavia University in northern Italy and provided by Prof. Paolo Gamba from 

the Telecommunications and Remote Sensing Laboratory of Pavia university. It consists of 610 × 340 

pixels and 103 spectral bands. The spatial resolution of this dataset is 1.3 m, which is higher than that of 

most HSI datasets. The wavelength of the dataset ranges from 430 to 860 nm. Furthermore, there are 9 

land-cover classes in this scene. The false-color image consisting of bands 53, 31, and 8 and the ground 

truth are shown in Fig. 5 (b). For this dataset, 3% and 6% of the labeled samples are randomly selected 

as the labeled and unlabeled training sets, respectively. The remaining labeled samples are used for 

testing. This dataset is available on the website http://www.ehu.eus/ccwintco/index.php/Hype-

rspectral_Remote_S-ensing_Scenes. 

3) University of Houston: This dataset was collected by the compact airborne spectrographic imager 

ITRES CASI-1500 in 2012, which covers the University of Houston campus. It was provided in the IEEE 

GRSS Data Fusion Contest in 2013 by National Center for Airborne Laser Mapping at the University of 

Houston. This dataset includes 349 × 1905 pixels and 144 spectral bands ranging from 364 to 1046 nm. 

The spatial and spectral resolutions of this dataset are 2.5 m and 10 nm, respectively. This dataset is a 

cloud-free hyperspectral product, which was processed by removing several small structures according 

to the illumination-related threshold maps that were computed based on the spectral signatures. Fig. 5 (c) 

presents the ground truth and false-color image consisting of bands 28, 45, and 65, which contains 15 

classes. For this dataset, 5% and 10% of the labeled samples are randomly selected as the labeled and 

unlabeled training sets, respectively. The remaining labeled samples are used for testing. This dataset 

can be downloaded on the website https://hyperspectral.ee.uh.edu/?page_id=459. 

5.2. Experimental Settings 

In the experiments, eight band selection methods were selected for a performance comparison with 

the proposed BSD-GCN method, including two filter methods, namely the mRMR [24] and HM [25], 

three wrapper methods, namely the SICNN [28], DDCNN [47], and DCS [27], two embedded methods, 

namely the TWCNN [40] and MR-SVM [30], and a special method, the ABCNN [49]. To compare the 

full-band performance, the SVM with the radial basis function (RBF-SVM) [58] was implemented to 

classify the samples with full spectral bands. Among these methods, the HM and DCS are semi-

supervised methods, whereas the others are supervised methods. The experiments were implemented on 

a computer equipped with an AMD Ryzen 9 3950X CPU and a Nvidia RTX TITAN GPU. The proposed 

BSD-GCN method was built in Python with the TensorFlow framework. 

We randomly selected 20% training samples as the validation set to fine-tune the hyperparameters in 

the comparison methods. Three main methods were used for determining the hyperparameters: the grid 

search, trial-and-error procedure, and recommendations of original papers. The grid search was used to 

build the SVM classifier in the RBF-SVM, mRMR, MR-SVM, HM, and DCS, which searched c in the 

range of {1, 10, 100, 1000, 10000} and gamma in the range of {0.01, 0.1, 1, 10, 100}. The trial-and-error 

procedure was employed to explore the optimal hyperparameters in the CNNs, such as the batch size, 

learning rate, and number of training epochs, according to their classification performance on the 

validation set. Moreover, this strategy was used to determine the number of partitions of full bands of 

the DDCNN, which was finally set to 5, and the number of neighbors in the K-nearest neighbors of the 

DCS, which was finally set to 9. The recommendations of original papers were adopted when it was 

difficult to determine the hyperparameters. This approach was used for the parameters of FODPSO of 

the SICNN in [28], the weight of the constraint term of the TWCNN in [40], and the parameters of 

anomaly detection of the ABCNN in [49]. For the BSD-GCN, the ultimate learning rate and batch size 

were set to 0.001 and 128, respectively, and the total number of epochs was set to 1000. The 

implementation guidelines and Python code of the BSD-GCN are publicly available on the website 

https://github.com/xidian-yzw/BSD-GCN.git. 

5.3. Classification Results 

Three widely recognized indicators, namely the overall accuracy (OA), average accuracy (AA), and 

http://www.ehu.eus/ccwintco/index.php/Hype-rspectral_Remote_S-ensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hype-rspectral_Remote_S-ensing_Scenes
https://hyperspectral.ee.uh.edu/?page_id=459
https://github.com/xidian-yzw/BSD-GCN.git
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Kappa coefficient (Kappa), were employed to compare the performance of the different algorithms. 

1) Indian Pines: Among all 200 spectral bands, 60 bands were selected for all of the band selection 

algorithms. The average classification results of the 30 independent runs are listed in Table Ⅴ. The best 

results for each class in terms of the OA, AA, and Kappa are marked in gray. As indicated in Table Ⅴ, 

the filter methods, namely the mRMR and HM, performed worse than the other methods because of the 

independence between the band selection and classification. The HM constructs a hypergraph to model 

the relations among samples and optimizes a projection matrix for band selection, which is independent 

of the classification. The DCS outperformed the HM through band selection guided by classification. 

Compared to the mRMR, HM, and DCS, the MR-SVM performed better by combining band selection 

and classification into one process. Benefiting from the strong feature extraction abilities of CNNs, the 

TWCNN, SICNN, DDCNN, and ABCNN surpassed the other comparison methods. The SICNN utilizes 

a 2D-CNN for classification, which involves more spatial information than the 1D-CNN in the DDCNN 

and ABCNN. In the TWCNN, depth-wise convolution is used for band selection. Compared to the 

SICNN and DDCNN, the TWCNN improved the classification performance. Compared to the CNN-

based algorithms, the BSD-GCN exhibited an improvement of at least 5.3% in terms of the OA, 5.2% in 

terms of the AA, and 6.2% in terms of Kappa. 

TABLE V  
CLASSIFICATION RESULTS OF RBF-SVM, MRMR, TWCNN, MR-SVM, SICNN, DDCNN, ABCNN, HM, DCS, AND BSD-GCN 

ON INDIAN PINES DATASET  
Class RBF-SVM mRMR TWCNN MR-SVM SICNN DDCNN ABCNN HM DCS  BSD-GCN 

1 55.8±14.1 29.5±5.8 68.2±21.4 67.4±6.3 83.4±7.0 75.0±6.9 23.3±11.2 30.3±8.9 36.4±14.5 80.4±3.8 

2 74.6±1.7 69.0±2.8 89.1±0.5 70.5±4.3 81.9±4.9 84.8±5.3 75.1±3.1 71.9±2.6 72.4±0.8 96.7±1.2 

3 63.4±4.4 60.8±4.5 92.9±1.7 54.0±2.1 82.8±3.2 80.7±2.4 73.0±4.3 60.7±3.7 56.3±3.3 97.4±0.7 

4 42.1±5.1 34.7±2.8 90.9±2.5 23.8±0.8 85.4±2.3 85.3±1.1 41.9±4.2 39.5±5.8 51.4±11.7 97.6±0.5 

5 88.7±2.7 84.6±4.8 86.1±5.9 88.8±4.6 79.9±8.4 85.8±1.4 88.0±1.1 85.3±1.9 85.8±1.5 95.8±0.4 

6 95.6±2.2 94.3±3.6 95.5±3.0 93.7±0.8 96.3±2.0 92.6±2.6 93.0±1.7 95.7±2.2 93.3±2.0 99.8±0.2 

7 70.8±11.1 40.7±2.8 93.8±8.7 65.4±7.9 82.4±3.9 40.7±7.3 75.0±1.6 38.3±3.6 55.8±26.0 96.1±3.8 

8 97.4±1.0 93.9±3.6 100.0±0.0 96.4±0.4 86.0±9.8 94.0±3.9 97.8±0.8 94.2±4.0 93.0±3.3 100.0±0.0 

9 24.2±13.7 21.1±6.4 87.7±2.5 10.5±1.7 42.2±9.8 42.1±9.3 41.2±8.9 16.5±9.4 32.9±16.9 83.3±9.4 

10 72.1±3.3 69.0±4.0 89.5±2.7 64.9±2.7 78.4±3.7 49.5±3.1 78.9±3.0 66.8±4.1 66.6±3.8 96.0±1.7 

11 79.1±2.3 72.7±2.9 96.4±2.8 84.5±2.6 94.1±3.4 84.7±1.6 82.9±0.7 75.4±3.0 81.1±2.2 98.5±0.2 

12 60.9±3.8 52.7±7.1 76.3±4.0 59.8±3.1 78.3±6.8 70.8±3.2 73.8±4.6 59.0±5.2 63.1±10.6 96.6±0.9 

13 97.2±1.5 95.3±2.6 98.6±0.9 95.3±0.1 82.3±8.0 98.9±7.6 100±0.0 91.8±3.6 94.8±4.8 91.4±0.3 

14 91.4±2.7 93.1±1.8 97.2±1.4 95.5±0.4 97.7±1.4 98.0±1.3 95.8±1.2 92.7±2.4 92.3±2.8 99.9±0.1 

15 43.3±6.3 43.0±3.5 87.5±6.3 48.8±8.3 83.6±3.3 76.8±4.6 58.3±2.3 46.3±4.6 39.1±9.8 99.1±0.5 

16 89.2±5.0 85.2±6.4 91.4±11.4 89.7±9.1 88.3±6.3 90.9±4.5 89.2±0.4 82.8±3.6 89.6±5.3 95.2±0.3 

OA (%) 77.5±0.4 73.5±0.7 92.4±1.0 75.8±1.0 87.6±1.0 82.7±1.0 81.5±1.7 74.9±1.5 75.2±1.2 97.7±0.4 

AA (%) 71.6±1.6 65.0±2.1 90.1±2.4 69.3±2.4 82.7±2.6 78.2±2.1 74.2±2.0 65.4±1.7 69.0±3.0 95.3±2.8 

Kappa (%) 74.3±0.5 69.8±0.8 91.3±1.1 73.3±1.7 85.9±1.1 80.4±1.5 78.8±1.4 71.3±1.7 72.7±1.4 97.5±0.9 
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Fig. 6 Visual classification maps of the Indian Pines dataset: (a) ground truth, (b) RBF-SVM, (c) mRMR, (d) TWCNN, (e) MR-

SVM, (f) SICNN, (g) DDCNN, (h) ABCNN, (i) HM, (j) DCS, and (k) BSD-GCN. 
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Fig. 6 shows the visual classification maps of the 10 methods and the ground truth of the Indian Pines 

dataset. As illustrated in Fig. 6 (b), (c), (e), and (g)-(j), each map contained many misclassified samples. 

For the RBF-SVM, mRMR, MR-SVM, DDCNN, ABCNN, HM, and DCS, the input samples of the 

classifier were at the pixel level, which resulted in noisy points in many regions. As illustrated in Fig. 6 

(d) and (f), the TWCNN and SICNN used spatial windows as the input and improved the regional 

consistency. However, several misclassifications occurred in the regions adjacent to the boundary, such 
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(i) (j) (k)  
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Trees Painted metal sheets Bare Soil

Bitumen Self-Blocking Bricks Shadows  
Fig. 7 Visual classification maps of the Pavia University dataset: (a) ground truth, (b) RBF-SVM, (c) mRMR, (d) TWCNN, (e) 

MR-SVM, (f) SICNN, (g) DDCNN, (h) ABCNN, (i) HM, (j) DCS, and (k) BSD-GCN. 

 

TABLE Ⅵ  
CLASSIFICATION RESULTS OF RBF-SVM, MRMR, TWCNN, MR-SVM, SICNN, DDCNN, ABCNN, HM, DCS, AND BSD-GCN 

ON THE PAVIA UNIVERSITY DATASET  
Class RBF-SVM mRMR TWCNN MR-SVM SICNN DDCNN ABCNN HM DCS  BSD-GCN 

1 88.5±1.0 94.7±2.3 96.2±0.9 83.2±2.3 93.0±1.9 99.2±0.3 93.2±0.6 88.7±1.7 87.2±2.1 98.6±0.7 

2 97.5±0.2 97.9±0.7 99.6±0.2 94.4±0.1 99.0±0.4 97.6±0.9 96.8±1.0 96.3±1.6 94.9±1.8 99.7±0.3 

3 65.5±3.1 34.3±1.8 65.2±8.9 89.1±2.0 96.1±2.5 74.2±2.5 73.5±2.3 61.7±0.2 57.9±5.3 90.7±4.0 

4 90.0±1.6 94.5±0.7 97.6±0.6 94.2±0.9 94.8±2.6 85.5±2.7 88.0±4.7 86.7±2.3 85.1±3.0 95.2±0.7 

5 99.3±0.1 99.5±0.1 100.0±0.0 96.3±0.1 99.2±0.2 82.9±0.4 99.5±0.1 98.7±0.2 98.7±0.2 98.8±1.0 

6 61.1±1.1 41.9±0.7 96.0±1.3 78.0±5.5 87.2±1.8 66.5±0.6 86.6±2.2 50.9±11.9 70.8±4.9 99.2±0.7 

7 76.6±4.5 84.4±8.3 84.8±3.3 30.4±9.3 78.1±1.7 69.8±4.3 76.2±6.1 71.5±1.8 74.0±4.7 99.0±0.9 

8 85.5±2.6 89.0±2.3 94.4±0.3 83.9±2.4 96.6±2.0 93.6±0.1 79.9±3.4 82.1±2.1 83.2±3.5 97.3±1.4 

9 95.9±2.1 87.4±0.2 98.6±1.0 98.5±0.4 93.6±4.1 86.2±1.8 99.5±0.1 99.6±0.1 99.6±0.1 89.6±4.0 

OA (%) 88.0±0.5 86.1±0.4 95.9±0.8 85.7±0.6 95.3±0.9 90.3±0.7 91.3±0.1 85.6±0.6 86.2±0.6 98.1±0.4 

AA (%) 84.4±0.6 80.4±1.2 92.5±1.5 83.1±1.5 93.1±0.7 83.9±0.7 88.1±0.4 81.8±0.6 83.5±0.8 97.5±0.6 

Kappa (%) 83.9±0.6 81.0±0.8 94.5±1.0 82.8±1.0 93.7±0.7 87.1±0.8 88.5±1.3 80.5±0.9 82.5±0.8 96.3±0.8 
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as the Soybean-notill and Soybean-mintill classes. In the BSD-GCN, although pixel-wise samples were 

provided as nodes, the spatial information among samples was also considered. Thus, compared to the 

TWCNN and SICNN, the BSD-GCN achieved better division in most classes and provided more 

accurate boundary localization. 

2) Pavia University: In this dataset, 30 bands were selected from the original 103 bands. The 

quantitative classification results of the algorithms on this dataset are presented in Table VI. The SICNN, 

TWCNN, and BSD-GCN achieved outstanding classification performance. In particular, the BSD-GCN 

outperformed the other methods in all the terms. Compared to the SICNN and TWCNN, the BSD-GCN 

exhibited an improvement of at least 2.2%, 4.4%, and 1.8% in terms of the OA, AA, and Kappa, 

respectively. For several categories, such as the Bitumen and Bare Soil classes, it was difficult for other 

methods to achieve satisfactory classification performance. However, the BSD-GCN could achieve 

competitive classification results by effectively learning the correlation between bands and extracting the 

discriminative features in the flexible receptive fields. 

The ground truth and visual classification maps of the Pavia University dataset are depicted in Fig. 7. 

As illustrated in Fig. 7 (b)-(j), the RBF-SVM, mRMR, MR-SVM, DDCNN, ABCNN, HM, and DCS had 

many noisy scattered points, whereas the TWCNN and SICNN caused some regional misclassifications, 

which were obvious in the regions of Bare Soil (marked in brown) and Meadows (marked in green). Fig. 

7 (j) presents the classification map of the BSD-GCN. Compared to the other methods, the BSD-GCN 

maintained higher regional consistency. The BSD-GCN provided a visual effect that was closer to the 

ground truth, especially for the Bare Soil and Meadows classes. 

3) University of Houston: For this dataset, 40 spectral bands were selected from the original 144 

spectral bands. The quantitative classification results of nine methods on this dataset are listed in Table 

TABLE Ⅶ 
CLASSIFICATION RESULTS OF RBF-SVM, MRMR, TWCNN, MR-SVM, SICNN, DDCNN, ABCNN, HM, DCS, AND BSD-

GCN ON THE UNIVERSITY OF HOUSTON DATASET 

Class RBF-SVM mRMR TWCNN MR-SVM SICNN DDCNN ABCNN HM DCS  BSD-GCN 

1 93.1±1.7 92.8±0.3 93.1±3.0 91.8±0.1 97.6±0.7 92.9±1.1 97.9±1.2 95.5±1.8 97.5±1.5 98.0±1.2 

2 96.7±0.4 95.5±0.4 97.8±1.3 96.3±0.3 98.5±0.5 96.1±1.5 89.9±2.4 96.1±1.5 95.2±2.5 99.0±0.3 

3 97.4±0.3 96.7±0.1 99.8±0.2 97.3±0.1 98.5±0.4 99.8±0.1 98.7±0.5 97.1±4.5 99.4±0.3 99.8±0.1 

4 92.6±2.1 88.7±0.3 92.4±2.3 94.1±0.3 98.7±0.1 89.1±2.0 95.5±1.3 94.1±4.2 95.8±0.7 99.0±1.0 

5 97.2±0.2 99.6±0.2 99.3±0.4 98.1±0.7 96.5±0.5 98.0±0.8 99.2±0.4 97.4±1.8 98.8±0.2 99.7±0.3 

6 94.2±0.4 95.1±0.4 88.1±1.2 93.9±0.9 93.6±1.4 89.3±0.6 96.8±1.0 92.2±3.2 94.9±1.1 98.5±1.3 

7 94.6±0.6 92.7±1.4 93.3±1.5 86.1±1.1 91.4±0.9 94.8±0.6 95.7±2.5 87.6±4.7 92.9±0.7 94.4±2.4 

8 76.2±3.8 61.5±2.1 88.5±2.1 77.8±3.7 83.8±2.9 80.0±3.4 88.4±2.9 75.9±4.2 78.5±4.0 93.1±2.2 

9 89.5±1.7 85.8±1.4 90.0±3.7 94.5±1.3 92.4±1.7 88.6±0.7 73.0±5.6 76.3±7.9 84.6±3.2 90.6±3.4 

10 95.4±2.8 97.2±0.9 94.3±4.2 92.7±3.3 94.3±2.3 92.9±0.4 97.1±1.8 88.2±3.2 89.2±1.1 96.8±1.8 

11 96.8±0.6 96.6±1.3 97.1±1.5 96.1±2.4 86.7±1.3 98.7±0.4 89.2±1.1 84.2±4.4 87.5±1.1 96.7±0.9 

12 86.4±3.6 83.3±5.4 92.5±2.7 86.7±3.1 89.9±4.4 90.3±1.5 91.6±2.1 78.8±4.4 85.9±0.4 94.8±2.5 

13 73.1±8.3 72.6±8.8 93.2±5.1 72.9±7.3 97.6±1.2 82.5±2.1 55.5±6.9 34.2±6.4 45.5±5.3 95.6±1.9 

14 99.0±0.1 99.5±0.1 96.3±2.6 98.5±0.2 97.1±0.4 97.3±1.9 100±0.0 96.6±2.0 98.8±0.9 100.0±0.0 

15 99.5±0.3 96.0±0.5 96.3±4.3 99.5±0.3 97.8±0.1 98.2±0.2 99.0±0.3 98.5±0.6 98.5±0.4 99. 7±0.1 

OA (%) 92.1±0.7 88.9±0.6 94.1±1.3 90.7±0.8 93.8±0.7 92.5±0.9 91.6±0.4 87.1±1.3 90.3±0.7 96.7±0.3 

AA (%) 92.1±1.2 90.2±1.4 94.1±1.4 91.7±1.3 92.7±1.7 92.6±1.1 91.2±0.9 86.2±1.0 89.5±0.7 97.1±0.4 

Kappa (%) 91.5±0.8 88.1±1.1 93.7±1.1 91.0±0.9 93.4±0.9 91.9±1.1 90.9±0.8 86.0±1.4 89.5±0.8 96.4±0.4 

 

TABLE VIII 

THE RANKING OF CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS ACROSS HSI DATASETS 

Dataset Indian Pines Pavia University University of Houston 

Index OA AA Kappa OA AA Kappa OA AA Kappa 

BSD-GCN 1 1 1 1 1 1 1 1 1 

TWCNN 2 2 2 2 3 2 2 2 2 

SICNN 3 3 3 3 2 3 3 3 3 

DDCNN 4 4 4 5 6 5 4 4 4 

ABCNN 5 5 5 4 4 4 6 7 7 

RBF-SVM 6 6 6 6 5 6 5 5 5 

MR-SVM 7 7 7 9 8 7 7 6 6 

DCS 8 8 8 8 7 8 8 9 8 

mRMR 10 10 10 7 10 9 9 8 9 

HM 9 9 9 10 9 10 10 10 10 
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Ⅶ. The BSD-GCN achieved the best classification performance in terms of the OA, AA, and Kappa 

among all of the methods. The BSD-GCN achieved the best classification accuracies in most categories 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

Grass_healthy Grass_stressed Grass_synthetic Tree
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Parking_lot2 Tennis_court Running_track
 

Fig. 8 Visual classification maps of the University of Houston dataset: (a) ground truth, (b) RBF-SVM, (c) mRMR, (d) 

TWCNN, (e) MR-SVM, (f) SICNN, (g) DDCNN, (h) ABCNN, (i) HM, (j) DCS, and (k) BSD-GCN.  

. 



 

18 

 

and maintained classification accuracies above 90% in all categories. For the Water and Commercial 

classes, the BSD-GCN improved the classification accuracies by at least 3.4% and 4.6%. For the 

Tennis_court class, the BSD-GCN achieved a completely correct result.  

Fig. 8 shows the visual classification maps and ground truth of the University of Houston dataset. In 

this dataset, the distribution of the labeled samples is not as centralized as in the previous datasets. Thus, 

we used full-image prediction to visualize the classification results. As illustrated in Fig. 8, the 

classification maps that were produced by the mRMR, ABCNN, and MR-SVM contained numerous 

noticeable misclassifications in the regions of the labeled samples. The SICNN, TWCNN, and DDCNN 

maintained better regional consistency. There were many noisy points in the classification maps that 

were generated by the HM and DCS. Compared to the other methods, the BSD-GCN achieved better 

regional consistency and boundary localization. 

To provide an overall and intuitive understanding of the performance of each algorithm, we added the 

Table VIII to record the results of experiments across all the hyperspectral scenes sets in the form of 

rankings. As indicated in Table VIII, BSD-GCN maintained the highest ranking in three indexes on three 

datasets. TWCNN and SICNN covered all the second and third places and these two methods were 

followed by ABCNN and RBF-SVM. MR-SVM, DCS, HM, and mRMR were mainly at the bottom of 

the rankings. Compared to other methods, the rankings of MR-SVM, mRMR and ABCNN are more 

unstable. 

5.4. Investigation of Running Time 

The running time of the nine methods for the three datasets is listed in Table IX. The running time 

included the training and test time. As indicated in Table IX, the RBF-SVM required the least time in 

the training stage owing to the lack of a band selection process. Among all the band selection methods, 

the mRMR was the fastest because of the efficiency of the incremental selection strategy. Compared to 

the mRMR, the MR-SVM required more time to retrain the SVM classifier. For the CNN-based methods, 

the DDCNN achieved a clear advantage in the training time owing to the use of a well-trained 1D-CNN. 

1D convolution was also conducted in the ABCNN to improve efficiency. Anomaly detection for band 

selection cost some time in the training process. Each candidate band subset was used to retrain the CNN 

classifier in the SICNN, which was more time consuming. The TWCNN saved on the training time 

because it completed the band selection and classification synchronously. Compared to the other methods, 

TABLE IX 

RUNNING TIME OF RBF-SVM, MRMR, TWCNN, MR-SVM, SICNN, DDCNN, ABCNN, HM, DCS, AND BSD-GCN 
Dataset Methods Training time (s) Inference time (s) 

Indian 

Pines 

RBF-SVM 0.4±0.1 0.8±0.1 

mRMR 1.2±0.1 0.3±0.1 

TWCNN 147.7±2.5 1.4±0.1 

MR-SVM 101.0±0.1 0.3±0.1 

SICNN 513.6±0.8 1.7±0.2 

DDCNN 26.3±3.7 1.4±0.3 

ABCNN 61.4±2.8 1.3±0.1 

HM 3411.7±55.0 0.8±0.1 

DCS  11810.7±125.0 1.8±0.1 

BSD-GCN 1204.6±8.7 1.6±0.2 

Pavia 

University 

RBF-SVM 0.5±0.1 1.2±0.1 

mRMR 1.9±0.1 0.8±0.1 

TWCNN 234.6±7.4 2.5±0.2 

MR-SVM 156.2±0.1 0.8±0.1 

SICNN 757.3±1.0 2.7±0.2 

DDCNN 36.2±4.1 1.5±0.1 

ABCNN 102±3.4 1.7±0.1 

HM 10175.1±100.2 1.3±0.1 

DCS  16902.5±56.0 1.3±0.2 

BSD-GCN 3716±39.2 2.6±0.6 

University 

of 

Houston 

RBF-SVM 0.6±0.1 1.3±0.1 

mRMR 1.5±0.1 0.9±0.1 

TWCNN 207.0±0.4 1.5±0.1 

MR-SVM 126.1±0.6 0.9±0.1 

SICNN 604.8±2.1 2.1±0.2 

DDCNN 30.9±2.7 1.2±0.2 

ABCNN 82.1±2.1 1.4±0.3 

HM 12798±64.0 1.5±0.2 

DCS  17161.4±150.5 1.3±0.2 

BSD-GCN 1576.4±50.3 1.6±0.1 
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the HM, DCS, and BSD-GCN required more training time owing to the use of abundant unlabeled 

samples. Among all the band selection methods, the DCS required the most training time. This is because 

numerous base classifiers were trained in the DCS to evaluate different combinations of band subsets. 

The HM made use of hypergraphs to construct the relationships among samples, which occupied most 

of the training time. In the BSD-GCN, the construction of different types of graphs resulted in a certain 

time consumption. Compared to the HM, the BSD-GCN used minibatch learning to promote training 

efficiency. For the inference time, all methods completed the inference process within seconds, and the 

methods based on deep learning required more time for the inference of the networks. 

5.5. Sensitivity to Number of Selected Bands 

In this section, the performance of the band selection methods with different numbers of selected bands 

was analyzed using two sample division methods: single split and five-fold cross-validation, to provide 

a comprehensive observation.  

Fig. 9 presents the variations in the OA of the different methods with different numbers of selected 

bands under the single split. As mentioned previously, the RBF-SVM employed all of the bands for 

classification; thus, the OA values of the RBF-SVM remained unchanged. For the Indian Pines dataset, 

the range of the number of selected bands was set to [2, 200]. For the Pavia University and University of 

Houston datasets, the ranges were [2,100] and [2, 140], respectively. In each range, the OA value was 

recorded at intervals of 20 bands.  

As illustrated in Fig. 9, the OA values of the mRMR, MR-SVM, HM, and DCS increased sharply in 

the range of 2 to 20 for the three datasets. The DDCNN and ABCNN also exhibited this trend on the 

University of Houston dataset. This could have resulted from the fact that it is difficult for too few bands 

to support the classifiers to distinguish the samples of different classes. Compared to these methods, the 

TWCNN, SICNN, and BSD-GCN could obtain better classification results with few bands, which may 

be owing to the more discriminative bands that they selected and their spatial–spectral feature extraction 

abilities. The OA values of the TWCNN, SICNN, and BSD-GCN gradually improved as the number of 

selected bands increased further. When the number of selected bands exceeded 60, the growth of all of 

the OA curves on the Indian Pines dataset tended to be slow. The classification of most methods also 

tended to be stable when 40 bands were selected on the Pavia University and University of Houston 

  
(a) (b) 

 

 

(c)  
Fig. 9 Sensitivity to number of selected bands under single spilt: (a) Indian Pines, (b) Pavia University, and (c) University of 

Houston.  
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datasets. Compared to the SICNN and TWCNN, the BSD-GCN maintained the best OA performance 

under most conditions. The BSD-GCN is a more suitable choice for selecting a more discriminative band 

subset. 

Tables X-XII display the classification results with different numbers of selected bands under five-

fold cross-validation. The range of the number of selected bands in the Indian Pines and University of 

Houston datasets was set to [20, 100] with intervals of 20 bands. The range of the number of selected 

bands on the Pavia University dataset was [10, 90] with intervals of 20 bands. As indicated in Tables X-

XII, the classification performance of all methods improved because a larger proportion of training 

samples was provided in the multi-fold cross-validation. The classification performance of each method 

improved with the increase in the selected bands. For the Pavia University dataset, there was little room 

TABLE X 
OVERALL ACCURACIES (%) OF FIVE-FOLD CROSS-VALIDATION WITH DIFFERENT NUMBERS OF SELECTED BANDS ON THE 

INDIAN PINES DATASET 

Method 20  40 60 80 100 

RBF-SVM 91.5±0.8 91.5±0.8 91.5±0.8 91.5±0.8 91.5±0.8 

mRMR 86.4±0.9 89.7±0.6 90.5±0.4 90.6±0.7 90.7±0.3 

TWCNN 96.6±0.4 97.8±0.3 98.0±0.2 98.2±0.1 98.3±0.1 

MR-SVM 87.1±0.6 90.7±0.5 90.9±0.3 91.1±0.2 91.1±0.2 

SICNN 95.7±0.6 96.9±1.0 97.0±0.8 97.2±0.3 97.2±0.2 

DDCNN 93.7±1.9 95.2±1.0 96.5±0.8 96.7±0.6 96.8±0.3 

ABCNN 93.5±1.7 94.8±0.4 95.9±0.2 96.1±0.2 96.3±0.2 

HM 88.9±0.9 90.1±0.3 90.8±0.2 91.0±0.1 91.1±0.1 

DCS 87.0±0.5 90.8±0.2 91.1±0.1 91.2±0.2 91.3±0.1 

BSD-GCN 97.8±0.9 98.1±0.7 99.3±0.2 99.7±0.1 99.7±0.1 

 
TABLE XI 

OVERALL ACCURACIES (%) OF FIVE-FOLD CROSS-VALIDATION WITH DIFFERENT NUMBERS OF SELECTED BANDS ON PAVIA 

UNIVERSITY DATASET 

Method 10  30 50 70 90 

RBF-SVM 93.4±0.7 93.4±0.7 93.4±0.7 93.4±0.7 93.4±0.7 

mRMR 88.2±1.3 90.9±0.6 91.1±0.5 91.4±0.3 91.7±0.2 

TWCNN 97.3±0.4 98.6±0.2 98.9±0.1 99.0±0.1 99.2±0.1 

MR-SVM 89.7±0.6 92.1±0.6 92.3±0.3 92.7±0.3 92.8±0.5 

SICNN 96.5±1.1 98.5±0.8 98.9±0.4 99.0±0.2 99.1±0.1 

DDCNN 94.3±1.4 97.9±0.5 98.1±0.7 98.2±0.6 98.2±0.7 

ABCNN 94.7±0.9 97.1±0.8 98.5±0.4 98.7±0.2 98.8±0.2 

HM 89.1±1.3 91.2±0.5 92.0±0.3 92.8±0.1 93.0±0.1 

DCS 89.7±0.8 91.6±0.6 92.2±0.7 92.9±0.2 93.2±0.1 

BSD-GCN 98.1±1.1 98.8±0.4 99.6±0.1 99.8±0.1 99.9±0.1 

 
TABLE XII 

OVERALL ACCURACIES (%) OF FIVE-FOLD CROSS-VALIDATION WITH DIFFERENT NUMBERS OF SELECTED BANDS ON THE 

UNIVERSITY OF HOUSTON DATASET 

Method 20  40 60 80 100 

RBF-SVM 98.6±0.3 98.6±0.3 98.6±0.3 98.6±0.3 98.6±0.3 

mRMR 92.1±1.5 95.7±1.0 96.1±0.8 96.6±0.7 97.0±0.2 

TWCNN 98.0±0.3 99.2±0.1 99.6±0.1 99.7±0.1 99.7±0.1 

MR-SVM 95.4±0.8 96.2±0.7 97.3±0.2 97.5±0.1 97.5±0.1 

SICNN 96.9±0.5 98.6±0.4 98.9±0.2 99.1±0.1 99.3±0.2 

DDCNN 96.1±1.0 97.9±0.2 98.1±0.1 98.4±0.1 98.4±0.1 

ABCNN 95.2±1.7 97.6±0.5 97.9±0.1 98.0±0.1 98.2±0.1 

HM 92.1±1.2 96.5±0.8 97.2±1.1 97.9±0.3 98.3±0.2 

DCS 94.8±0.5 97.2±0.3 97.6±0.3 98.0±0.1 98.5±0.2 

BSD-GCN 98.9±0.4 99.7±0.1 99.7±0.1 99.8±0.1 99.8±0.1 
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for improvement in the OA in most methods after 30 bands were selected. Further improvement was also 

limited after 60 bands were selected on the Indian Pines dataset and 40 bands were selected on the 

University of Houston dataset. Compared to the CNN-based methods, the OA values of the mRMR, MR-

SVM, HM, and DCS changed more dramatically with different selected bands. For example, the OA 

value of the mRMR with 100 selected bands was 4.9% higher than that with 20 selected bands on the 

University of Houston dataset. Although the CNN-based methods exhibited relatively smooth changes, 

significant differences in the classification performance could still be observed with different selected 

bands.  

In summary, 60, 30, and 40 were determined and recommended as the numbers of selected bands on 

the Indian Pines, Pavia University, and University of Houston datasets, respectively. 

5.6. Analysis of the Selected Spectral Bands 

In this section, the selected bands were analyzed based on the location and entropy value of each band. 

Shannon entropy was used to evaluate the amount of information in the selected spectral bands. The 

upper parts of Fig. 10 (a), (b), and (c) depict the locations of the selected spectral bands, where each point 

corresponds to the location of each selected band. The lower parts of Fig. 10 (a), (b), and (c) depict the 

entropy values of the entire spectral bands. To show the results clearly, the band selection methods were 

 
(a) 

 
(b) 

 
 (c) 

Fig. 10 The 20 spectral bands selected by different methods in above subfigures and entropy value of each band 

in below subfigures on (a) Indian Pines, (b) Pavia University, and (c) University of Houston datasets. 
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set to select 20 bands. As illustrated in Fig. 10, the bands selected by the DCS, HM, and ABCNN were 

located more densely, which would cause greater information redundancy owing to the high correlation 

between adjacent bands. The BSD-GCN, DDCNN, SICNN, and MR-SVM selected bands in a wider and 

more scattered range. However, the DDCNN and MR-SVM selected more adjacent bands than the BSD-

GCN. Spectral bands with larger entropy values contain more information. The mRMR, DCS, and 

TWCNN selected several spectral bands with low entropy values, which was likely to limit the 

classification performance. Compared to the other methods, the BSD-GCN tended to select bands with 

larger entropy values and achieved more discrete band distribution. 

5.7. Sensitivity to Different Proportions of Training Samples 

TABLE XIII 
OVERALL ACCURACIES (%) WITH DIFFERENT PROPORTIONS OF TRAINING SAMPLES ON THE INDIAN PINES DATASET 

Method 1%  3% 5% 10% 20% 40% 

RBF-SVM 63.7±3.1 69.8±1.8 77.5±0.4 80.1±0.9 83.6±0.8 89.6±0.3 

mRMR 62.6±3.2 67.4±1.0 73.5±0.7 78.3±0.8 81.9±1.0 88.3±0.2 

TWCNN 60.2±2.4 77.4±2.3 92.4±1.0 94.5±1.2 96.2±0.9 97.2±0.1 

MR-SVM 63.3±2.0 68.0±1.7 75.8±1.0 77.6±1.1 82.0±0.6 88.6±0.2 

SICNN 58.5±1.1 75.2±2.4 87.6±1.0 90.2±1.2 92.5±1.0 96.5±0.2 

DDCNN 55.7±2.6 71.8±2.3 82.7±1.0 88.3±1.1 91.4±0.6 95.1±0.5 

ABCNN 54.3±1.8 69.5±2.0 81.5±1.7 87.9±1.3 90.3±1.7 92.9±0.9 

HM 60.3±2.0 65.6±1.9 74.9±1.5 78.3±1.4 81.1±1.4 88.9±0.6 

DCS 61.2±2.7 67.8±2.0 75.2±1.2 79.4±1.6 81.2±1.3 89.0±0.3 

BSD-GCN 70.5±1.9 86.7±1.5 97.7±0.4 98.0±0.2 98.3±0.2 99.1±0.1 

 
TABLE XIV 

OVERALL ACCURACIES (%) WITH DIFFERENT PROPORTIONS OF TRAINING SAMPLES ON THE PAVIA UNIVERSITY DATASET 

Method 1%  3% 5% 10% 20% 40% 

RBF-SVM 84.2±1.3 88.0±0.5 88.7±0.2 90.1±0.3 90.7±0.2 91.5±0.1 

mRMR 83.5±1.1 86.1±0.4 87.4±0.5 88.3±1.0 89.6±0.8 90.8±0.4 

TWCNN 90.4±2.1 95.9±0.8 96.5±1.0 97.3±0.2 97.8±0.3 99.0±0.1 

MR-SVM 84.0±0.9 85.7±0.6 86.3±0.7 88.0±0.3 89.7±0.5 90.6±0.3 

SICNN 81.5±1.7 95.3±0.9 96.2±1.1 96.9±1.0 97.3±0.9 98.7±0.2 

DDCNN 79.2±1.0 90.3±0.7 94.3±1.3 95.1±0.6 96.2±0.7 96.8±0.3 

ABCNN 79.6±0.8 91.3±0.1 94.5±0.4 95.3±0.7 96.9±0.8 97.0±0.2 

HM 82.9±1.6 85.6±0.6 86.7±0.9 88.4±1.2 88.9±0.7 90.6±0.1 

DCS 83.2±0.9 86.2±0.6 87.1±1.0 89.0±0.3 90.3±0.6 90.9±0.1 

BSD-GCN 91.7±1.2 98.1±0.4 98.7±0.2 99.0±0.1 99.2±0.1 99.2±0.1 

 
TABLE XV 

OVERALL ACCURACIES (%) WITH DIFFERENT PROPORTIONS OF TRAINING SAMPLES ON THE UNIVERSITY OF HOUSTON 

DATASET 

Method 1%  3% 5% 10% 20% 40% 

RBF-SVM 77.6±0.6 86.7±1.2 92.1±0.7 94.8±0.5 96.0±0.4 97.5±0.3 

mRMR 74.8±1.3 83.7±1.0 88.9±0.6 91.5±1.1 94.6±0.7 95.2±0.3 

TWCNN 78.5±2.0 87.4±1.1 94.1±1.3 95.6±0.7 97.0±0.4 98.9±0.1 

MR-SVM 75.0±0.4 84.3±0.9 90.7±0.8 93.1±0.9 95.5±0.8 96.7±0.4 

SICNN 76.8±1.2 86.9±0.8 93.8±0.7 95.0±0.8 96.4±0.5 97.1±0.2 

DDCNN 72.0±2.6 84.9±1.0 92.5±0.9 93.8±0.7 95.5±0.8 96.4±0.3 

ABCNN 69.6±2.9 85.3±1.0 91.6±0.4 93.2±0.9 94.4±0.5 95.7±0.8 

HM 73.2±2.0 81.0±1.5 87.1±1.3 90.5±1.1 93.9±0.7 95.3±0.3 

DCS 75.1±1.4 84.9±0.8 90.3±0.7 92.3±0.7 94.3±0.8 96.0±0.2 

BSD-GCN 81.2±1.7 90.2±0.9 96.7±0.3 97.6±0.3 97.9±0.2 99.0±0.1 
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In this section, the classification performance of all methods with different proportions of training 

samples was analyzed. The corresponding experimental results for the three HSI datasets are listed in 

Tables XIII-XV. 

The classification performance of all methods improved with an increase in the training samples. In 

the Indian Pines dataset, the RBF-SVM, mRMR, MR-SVM, HM, and DCS outperformed the CNN-based 

methods when only 1% of the labeled samples were used for training. In this case, compared to the other 

methods, the BSD-GCN exhibited the best performance and achieved an improvement of at least 7.2% 

in terms of the OA. There were more available samples for training in the Pavia University and the 

University of Houston datasets. When the training samples were sufficient, the SICNN, TWCNN, and 

BSD-GCN exhibited obvious improvements over the traditional methods. Compared to the other band 

selection methods, the BSD-GCN continuously maintained the best classification performance with 

different proportions of training samples. 

5.8. Effectiveness Analysis on the Salinas Dataset 

The Salinas dataset was obtained by an airborne visible/infrared imaging spectrometer sensor, which 

was the same as that of the Indian Pines dataset. The spatial resolution in the Salinas dataset is 3.7 m, 

which is much higher than that of the Indian Pines dataset. This dataset covers the Salinas Valley in 

California, USA, and includes 512 × 217 pixels with 224 spectral bands. After 20 water absorption bands 

were removed, 204 bands remained for further processing. The Salinas dataset contains 16 land-cover 

classes. The false-color composite image (bands 69, 27, 11) and the ground truth of the Salinas dataset 

are presented in Fig. 11. For this dataset, 3% and 6% of the labeled samples were randomly selected as 

the labeled and unlabeled training sets, respectively. The number of selected bands was set to 60. The 

remaining labeled samples were used for testing. This dataset is available on the website 

http://www.ehu.eu-s/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes. The classification 

performance of the different methods is shown in Table XVI. 

Compared to the SICNN and DDCNN, the TWCNN exhibited an obvious improvement in the 

classification performance. All of the methods achieved higher AA values than OA values. This may be 

because the samples of each class in the Salinas dataset are more evenly distributed. Compared to the 

other methods, the BSD-GCN exhibited improvements of at least 1.8%, 1.9%, and 6.0% in terms of the 

OA, AA, and Kappa, respectively. 

5.9. Comparison with Other State-of-the-Art Dimensionality Reduction Methods 

In this section, BSD-GCN was compared with two other state-of-the-art dimensionality reduction 
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Fig. 11 False-color composite image and ground truth of Salinas dataset.  

 
TABLE XVI 

CLASSIFICATION RESULTS OF RBF-SVM, MRMR, TWCNN, MR-SVM, SICNN, DDCNN, ABCNN, HM, DCS, AND BSD-GCN 

ON SALINAS DATASET 

Class RBF-SVM mRMR TWCNN MR-SVM SICNN DDCNN ABCNN HM DCS  BSD-GCN 

OA (%) 91.3±0.5 89.1±0.5 96.6±1.0 88.2±2.0 91.7±2.1 90.8±2.0 90.5±1.1 89.5±0.3 90.3±1.0 98.4±0.1 

AA (%) 94.6±0.3 93.4±0.7 97.1±0.8 90.7±1.6 94.2±1.8 93.1±1.1 92.4±1.0 92.0±0.2 92.1±1.5 99.0±0.1 

Kappa (%) 89.2±0.3 88.7±0.3 92.2±1.5 87.3±1.7 90.5±0.7 88.2±1.3 89.8±0.9 88.2±0.3 89.4±1.2 98.2±0.3 

 

http://www.ehu.eu-s/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.%20The
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methods, namely S3-PCA [14] and the adaptive subspace partition strategy with minimizing noise 

(ASPS_MN) [46]. The experimental results for the three datasets are listed in Tables XVII-XIX. 

The S3-PCA achieved better classification performance than the DCS and SICNN owing to its 

effective spatial segmentation and use of spectral information. Compared to S3-PCA, the BSD-GCN 

performed better in terms of the OA, AA, and Kappa for all three datasets. The ASPS_MN achieved 

better classification performance than the mRMR and HM by using an adaptive subspace partition to 

select informative and distinctive bands. The BSD-GCN outperformed the ASPS_MN by at least 5.8%, 

8.5%, and 9.1% in terms of the OA, AA, and Kappa on the three datasets. 

5.10. Ablation Experiments in BSD-GCN 

Ablation experiments were conducted to investigate the effectiveness of the spectral graphs, spatial 

graphs, and full-band loss in the BSD-GCN. Specifically, the BSD-GCN has three core contributions, 

namely the spectral and spatial graphs in the attention and trunk branches, and the full-band loss in the 

optimization. To analyze the contribution of each component, the classification results of the BSD-GCN 

without different components are listed in Table XX. Furthermore, the performance of the original BSD-

GCN is presented to provide a more intuitive comparison. 

As indicated in Table XX, when the spatial graphs were removed and the spectral graphs were retained, 

the performance of the BSD-GCN decreased significantly. This means that the pure spectral 

characteristics were not sufficient to provide discriminative information for the different classes. The 

proposed method could achieve high performance when the spatial graphs were retained. This may be 

TABLE XVII 
CLASSIFICATION RESULTS OF S3-PCA, MRMR, TWCNN, MR-SVM, SICNN, DDCNN, ABCNN, HM, ASPS_MN, DCS, AND 

BSD-GCN ON THE INDIAN PINES DATASET  

Class S3-PCA mRMR TWCNN MR-SVM SICNN DDCNN ABCNN HM ASPS_MN DCS  BSD-GCN 

OA (%) 94.2±0.5 73.5±0.7 92.4±1.0 75.8±1.0 87.6±1.0 82.7±1.0 81.5±1.7 74.9±1.5 76.0±1.3 75.2±1.2 97.7±0.4 

AA (%) 95.1±0.3 65.0±2.1 90.1±2.4 69.3±2.4 82.7±2.6 78.2±2.1 74.2±2.0 65.4±1.7 71.0±1.0 69.0±3.0 95.3±2.8 

Kappa (%) 93.7±0.6 69.8±0.8 91.3±1.1 73.3±1.7 85.9±1.1 80.4±1.5 78.8±1.4 71.3±1.7 73.1±0.6 72.7±1.4 97.5±0.9 

 
TABLE XVIII 

CLASSIFICATION RESULTS OF S3-PCA, MRMR, TWCNN, MR-SVM, SICNN, DDCNN, ABCNN, HM, ASPS_MN, DCS, AND 

BSD-GCN ON THE PAVIA UNIVERSITY DATASET  

Class S3-PCA mRMR TWCNN MR-SVM SICNN DDCNN ABCNN HM ASPS_MN DCS  BSD-GCN 

OA (%) 95.1±0.2 86.1±0.4 95.9±0.8 85.7±0.6 95.3±0.9 90.3±0.7 91.3±0.1 85.6±0.6 87.0±0.9 86.2±0.6 98.1±0.4 

AA (%) 93.0±1.0 80.4±1.2 92.5±1.5 83.1±1.5 93.1±0.7 83.9±0.7 88.1±0.4 81.8±0.6 84.1±1.1 83.5±0.8 97.5±0.6 

Kappa (%) 92.9±0.7 81.0±0.8 94.5±1.0 82.8±1.0 93.7±0.7 87.1±0.8 88.5±1.3 80.5±0.9 82.3±0.9 82.5±0.8 96.3±0.8 

 
TABLE XIX 

CLASSIFICATION RESULTS OF S3-PCA, MRMR, TWCNN, MR-SVM, SICNN, DDCNN, ABCNN, HM, ASPS_MN, DCS, AND 

BSD-GCN ON THE UNIVERSITY OF HOUSTON DATASET  

Class S3-PCA mRMR TWCNN MR-SVM SICNN DDCNN ABCNN HM ASPS_MN DCS  BSD-GCN 

OA (%) 95.8±0.5 88.9±0.6 94.1±1.3 90.7±0.8 93.8±0.7 92.5±0.9 91.6±0.4 87.1±1.3 90.9±0.5 90.3±0.7 96.7±0.3 

AA (%) 96.0±0.2 90.2±1.4 94.1±1.4 91.7±1.3 92.7±1.7 92.6±1.1 91.2±0.9 86.2±1.0 88.6±0.8 89.5±0.7 97.1±0.4 

Kappa (%) 93.1±1.3 88.1±1.1 93.7±1.1 91.0±0.9 93.4±0.9 91.9±1.1 90.9±0.8 86.0±1.4 87.3±0.9 89.5±0.8 96.4±0.4 

 

TABLE XX 

CLASSIFICATION PERFORMANCE IN ABLATION EXPERIMENTS 

Dataset Conditions OA (%) AA (%) Kappa (%) 

Indian Pines 

BSD-GCN without spectral graphs 92.4±0.8 91.3±0.4 91.6±1.2 

BSD-GCN without spatial graphs 85.7±1.2 84.6±1.1 84.0±0.9 

BSD-GCN without full-band loss 94.2±0.6 93.1±0.7 93.5±0.6 

BSD-GCN 97.7±0.4 95.3±2.8 97.5±0.9 

Pavia 

University 

BSD-GCN without spectral graphs 95.2±0.6 92.4±1.3 92.3±1.4 

BSD-GCN without spatial graphs 88.1±0.5 86.0±0.7 86.2±0.8 

BSD-GCN without full-band loss 96.9±1.0 94.8±0.9 95.1±0.9 

BSD-GCN 98.1±0.4 97.3±0.6 96.3±0.8 

University 

of 

Houston 

BSD-GCN without spectral graphs 93.6±0.9 92.0±1.5 92.2±0.6 

BSD-GCN without spatial graphs 87.2±2.4 85.1±1.9 83.7±1.7 

BSD-GCN without full-band loss 94.6±2.1 94.0±2.3 93.9±2.5 

BSD-GCN 96.7±0.3 97.1±0.4 96.4±0.4 
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owing to the fact that the neighborhood of samples in the local regions was more likely to be of the same 

class. Therefore, spatial aggregation enhanced the feature discrimination. Thus, it is recommended that 

spatial graphs be selected and used in the BSD-GCN. When the full-band loss was removed, the 

performance of the BSD-GCN declined because the updating of the parameters was limited. It is difficult 

for the BSD-GCN to select the most discriminative bands. Overall, the spatial graphs, spectral graphs, 

and soft-shifting optimization complemented one another to enable the proposed method to achieve 

outstanding classification results.  

5.11. Analysis of Hyperparameters in BSD-GCN 

In this section, the effects of the training epoch number, learning rate, and batch size on the 

classification performance were investigated. The corresponding experimental results are presented in 

Fig. 12. 

As illustrated in Fig. 12, the change in the learning rate and epoch number had a significant influence 

on the classification performance of the BSD-GCN. If the learning rate is too large, the BSD-GCN may 

not converge. Conversely, if the learning rate is too small, the convergence speed will be too slow. Thus, 

a learning rate of 0.001 was set. It is difficult for the BSD-GCN to converge if the epoch number is too 

small. Meanwhile, too many iterations would lead to wasted time. Therefore, 1000 was selected as the 

training epoch number. The effect of the batch size was weaker than that of the other two parameters. As 

illustrated in Fig. 12 (b), satisfactory performance could be achieved with a batch size of 128. An 

excessive batch size would incur an additional cost in calculating the sample-based dual graphs and failed 

to improve the performance significantly. Thus, 128 was eventually set as the batch size. 

6. Conclusion 

In this paper, a novel BSD-GCN method has been proposed for the band selection of HSIs. To make 

full use of the correlations among bands in adjacent and long-range positions, band-based dual graphs 

are constructed to transform the band information into non-Euclidean space. Thereafter, graph 

  
(a) (b) 

 

 

(c)  

Fig. 12 Classification performance of BSD-GCN under different values of (a) learning rate, (b) batch size, and (c) epoch 

number.  
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convolution is employed to integrate the features among different bands to generate the attention map. 

To retain the most discriminative band subset, the attention map is sparsely constrained and inserted into 

the first layer of the trunk branch. Spatial–spectral graph convolution modules based on sample-based 

dual graphs are stacked and densely connected for feature extraction and classification to evaluate the 

quality of the selected bands. To alleviate the difficulty in updating the parameters of the unselected 

bands, soft-shifting optimization is implemented to assist in updating the unselected bands by adding the 

loss of full bands, which optimizes the BSD-GCN in an end-to-end manner. The experimental results on 

three representative HSI datasets demonstrated the effectiveness of the proposed BSD-GCN method. In 

the future, we will focus on designing a GCN model for the band selection of specific categories. 

Moreover, band selection that is specific to semantic segmentation and object detection problems will be 

further investigated. 
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