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Abstract—Band selection has been widely utilized in hyper-
spectral image (HSI) classification to reduce the dimensionality
of HSIs. Recently, deep-learning-based band selection has become
of great interest. However, existing deep-learning-based methods
usually implement band selection and classification in isolation,
or evaluate selected spectral bands by training the deep network
repeatedly, which may lead to the loss of discriminative bands
and increased computational cost. In this article, a novel convo-
lutional neural network (CNN) based on bandwise-independent
convolution and hard thresholding (BHCNN) is proposed, which
combines band selection, feature extraction, and classification
into an end-to-end trainable network. In BHCNN, a band selec-
tion layer is constructed by designing bandwise 1×1 convolutions,
which perform for each spectral band of input HSIs inde-
pendently. Then, hard thresholding is utilized to constrain the
weights of convolution kernels with unselected spectral bands
to zero. In this case, these weights are difficult to update. To
optimize these weights, the straight-through estimator (STE) is
devised by approximating the gradient. Furthermore, a novel
coarse-to-fine loss calculated by full and selected spectral bands
is defined to improve the interpretability of STE. In the subse-
quent layers of BHCNN, multiscale 3-D dilated convolutions are
constructed to extract joint spatial–spectral features from HSIs
with selected spectral bands. The experimental results on sev-
eral HSI datasets demonstrate that the proposed method uses
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selected spectral bands to achieve more encouraging classifica-
tion performance than current state-of-the-art band selection
methods.

Index Terms—3-D dilated convolution, band selection, convo-
lutional neural network (CNN), hard thresholding, hyperspectral
image (HSI) classification, straight-through estimator (STE).

I. INTRODUCTION

HYPERSPECTRAL remote sensing has an extremely
important position in practical applications. Hundreds

of spectral bands with continuous and narrow characteris-
tics are obtained by hyperspectral remote sensing imaging
spectrometers [1]. Therefore, compared with other remote
sensing images, hyperspectral images (HSIs) have a better
distinction for different land-cover classes. HSIs have been
successfully applied in different fields, such as military [2],
astronomy [3], agriculture [4], and mineralogy [5].

HSI classification has become one of the research
hotspots [6]. In the HSI classification, high-resolution spectral
bands provide more information for the identification of dif-
ferent land-cover classes. However, high correlation between
spectral bands brings a certain degree of redundancy, which
increases the computational burden and storage requirements.
Furthermore, massive spectral bands may cause the “Hughes
phenomenon.” It means that the classification performance
degrades when the number of spectral bands increases with the
limited training samples. Therefore, dimensionality reduction
is a crucial step of HSI classification.

The feature extraction and feature selection are two main
dimensionality reduction methods [7]. In the feature extrac-
tion, new low-dimensional features are obtained by linearly or
nonlinearly transforming the original data. Some representa-
tive algorithms include local Fisher’s discriminant analysis [8],
graph embedding [9], principal component analysis [10], and
hypergraph discriminant analysis [11]. Feature selection elim-
inates some noisy, irrelevant, and redundant features through
selecting the most discriminative or informative feature sub-
set from original features. Although feature extraction often
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achieves better classification performance, extracted features
are linear or nonlinear combination from original features and
hard to interpret. Different from feature extraction, feature
or band selection still keeps the physical meaning of origi-
nal HSI data and has better interpretability for some specific
applications. It is favored for HSI processing [12].

In the feature selection methods, filter, wrapper, and
embedded are three main types [13]. In filter methods, the
quality of selected spectral bands is measured by using
certain predefined criteria, which are calculated only by
the intrinsic properties of training samples. This type of
method can be combined with various classifiers flexi-
bly; thus, these methods have better generalization ability.
Peng et al. [14] proposed a minimum-redundancy maximum-
relevance (mRMR) method, which simultaneously maximizes
the dependency of individual feature and minimizes the
redundancy between any two features. In mRMR, the redun-
dancy measure is independent of the corresponding classi-
fication task. To calculate the redundancy for classification,
a new method based on the trivariate mutual information
and clonal selection algorithm (TMI-CSA) was proposed for
band selection of HSIs [15]. Both mRMR and TMI-CSA use
information-based criteria [16], [17]. Furthermore, there are
distance-based criteria [18], consistency-based criteria [19],
manifold learning-based criteria [20], etc.

Wrapper methods evaluate the quality of the selected band
subset through training and testing in the chosen classifier. In
these methods, candidate band subsets are obtained first. Then,
the classifier is trained iteratively based on each candidate band
subset. In [21], nearest neighbor classifier is chosen as the eval-
uator of candidate band subsets and the genetic algorithm is
devised to search in these band subsets. In [22], the fractional-
order Darwinian particle swarm optimization (FODPSO) and
support vector machine (SVM) are combined for feature selec-
tion. The classification result of SVM is considered as the fitness
value of FODPSO. Compared with filter methods, wrapper
methods often have better classification performance. However,
each candidate band subset needs a well-trained classifier. Since
the number of candidate band subsets is numerous, this type of
wrapper method needs a large number of well-trained classifiers.
Thus, these methods are time consuming.

In embedded methods, an optimal feature subset is searched
in the process of classifier construction. In [23], an SVM-
based feature selection method with recursive feature elim-
ination (RFE-SVM) was proposed. In RFE-SVM, features
are eliminated by using the weights calculated in the train-
ing of SVM. An improved version of RFE-SVM is modified
recursive SVM (MR-SVM) [24]. Compared with RFE-SVM,
MR-SVM integrates the mean values of features from different
classes to eliminate the features. Later, a novel multiple kernel
learning method based on discriminative kernel clustering
(DKC-MKL) was proposed for band selection of HSIs [25].
DKC-MKL selects an appropriate band subset and implements
classification by optimizing MKL with sparse constraint. In
most cases, compared to the wrapper methods, the embedded
methods are more efficient. Compared to the filter methods,
the embedded methods generally achieve better classification
performance.

In the last decade, deep neural-network methods were
fascinating due to powerful feature representation and clas-
sification ability. Among these methods, convolutional neural
network (CNN) with local receptive fields and shared weights
has attracted more attention in image processing. Recently,
CNN-based methods [26]–[28] have been successfully applied
to band selection of HSIs. In [26] and [27], the quality of can-
didate band subsets is evaluated by CNN. In [26], FODPSO is
used to search in candidate band subsets. For each candidate
band subset, CNN needs to be trained to evaluate its classi-
fication performance. This method is abbreviated as SICNN,
which uses the powerful classification ability of CNN effec-
tively. However, SICNN is time consuming because of the
repeated training of CNN with numerous parameters. In [27],
a new CNN method based on distance density (DDCNN) was
proposed for band selection. In DDCNN, candidate band sub-
sets are selected by measuring the distance density among the
spectral bands. Then, the classification performance of all the
candidate band subsets is evaluated by using 1-D CNN trained
beforehand with full-band HSI data. Compared with SICNN,
DDCNN saves time by training CNN in advance. But the
fixed trainable parameters in DDCNN may not always evaluate
the classification performance of candidate band subsets effec-
tively. Recently, an unsupervised band selection method was
proposed by considering band selection as a CNN-based spec-
tral reconstruction task, which is abbreviated as BS-Nets [28].
In BS-Nets, the band subset most capable of reconstructing
original spectral bands is selected. Then, SVM is used as the
final classifier. BS-Nets may lose discriminative bands because
the feedback from SVM cannot influence the band selection.

In this article, a novel CNN method based on bandwise-
independent convolution and hard thresholding (BHCNN) is
proposed, which combines band selection, multiscale spatial–
spectral feature extraction, and classification into a uni-
fied optimization procedure. In BHCNN, a new bandwise-
independent convolution is designed in the band selection
layer. Specifically, it performs a single 1 × 1 convolution
for each spectral band of input HSIs independently. Then,
hard thresholding is devised to discard some irrelevant, redun-
dant or noisy bands by constraining the small kernel weights
of bandwise-independent convolutions as zero. Then, HSI
data with selected spectral bands are fed into subsequent lay-
ers. To fully utilize spatial and spectral information of HSI
data, feature extraction layers with multiscale 3-D dilated
convolutions are designed. Finally, multiscale spatial–spectral
features are input into the classification layer. At the same
time, an auxiliary classifier after the band selection layer is
added to improve the discriminative ability of selected spec-
tral bands. In the training of BHCNN, the weights of the
band selection layer are difficult to be updated because the
gradient of the weights corresponding to unselected bands is
zero everywhere. To optimize these weights, straight-through
estimator (STE) is designed by using the gradient approxima-
tion in BHCNN, which is abbreviated as BHCNN-STE. To
improve the interpretability of STE, a new coarse-to-fine loss
based on the real gradient is defined by introducing an addi-
tional full-band branch in the band selection layer. BHCNN
with the coarse-to-fine loss is abbreviated as BHCNN-CFL. In

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on July 02,2020 at 13:12:06 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FENG et al.: CONVOLUTIONAL NEURAL NETWORK BASED ON BANDWISE-INDEPENDENT CONVOLUTION AND HARD THRESHOLDING 3

Fig. 1. Architecture of the proposed BHCNN method.

BHCNN-CFL, the coarse loss updates all the weights of the
full-band branch and learns the classification model. The fine
loss selects the spectral bands based on the weights from
the full-band branch and fine-tunes the classification model.
During the optimization process of BHCNN-CFL, the loss
gradually shifts from the coarse loss to the fine loss by using
an adaptive adjustment factor.

The main contributions of this article can be summarized
as follows.

1) BHCNN-STE and BHCNN-CFL incorporate the band
selection process into the training of CNN. These two
methods not only overcome the problem of selecting less
discriminative bands caused by the separation of band
selection and classification but also alleviate the time-
consuming problem caused by training the classification
network repeatedly.

2) BHCNN-STE and BHCNN-CFL design the STE and
define the coarse-to-fine loss to solve the difficulty
that the band selection layer cannot be updated. These
two methods can optimize the band selection, spatial–
spectral feature extraction, and classification simultane-
ously. BHCNN-CFL utilizes the real gradient instead of
the gradient approximation in BHCNN-STE, which has
more physical meaning in the process of optimization
and better interpretability.

3) 3-D dilated convolutions with various dilated rates
are constructed to increase the receptive fields with-
out introducing extra parameters, and capture multiscale
spatial–spectral features simultaneously.

4) To further select more discriminative spectral bands, an
auxiliary classification layer is connected after the band
selection layer. Both the final and auxiliary classifiers are
optimized to improve the performance of band selection
and classification.

In the following sections of this article, the architecture of
the proposed BHCNN is described in Section II. Section III
introduces two optimization methods for BHCNN-based

architecture, BHCNN-STE and BHCNN-CFL. In Section IV,
the experimental results and analysis based on benchmark
HSI datasets are presented. In Section V, some concluding
observations and recommendations are provided for future work.

II. ARCHITECTURE OF BHCNN

The main architecture of the proposed BHCNN contains
a band selection part based on bandwise-independent con-
volution and hard thresholding, a multiscale spatial–spectral
feature extraction part based on 3-D dilated convolution,
and a classification part with auxiliary classifier. It is shown
in Fig. 1.

A. Band Selection Part Based on Bandwise-Independent
Convolution and Hard Thresholding

HSIs have abundant spectral information with high spec-
tral resolution, which can distinguish among similar spectral
signatures. Unfortunately, a large number of spectral bands
may contain some irrelevant, redundant, or noisy bands, which
result in the deterioration of classification performance. To
alleviate this problem, band selection methods only retain the
most discriminative or informative bands from original spec-
tral bands. Inspired by the depthwise separable convolution,
a novel bandwise-independent convolution is constructed.

Fig. 2 illustrates the standard convolution, depthwise sep-
arable convolution, and bandwise-independent convolution.
Each input channel is convolved with one specific kernel
in standard convolution, and these channels are summed
as the output. Depthwise separable convolution was first
introduced in [29], which can be seen as a factorized con-
volution. Specifically, the standard convolution can be fac-
torized into the channel-independent depthwise convolution
and the spatial-independent pointwise (1 × 1) convolution.
Due to effective reduction of parameters and computa-
tion, depthwise separable convolution has been applied in
MobileNet V1 [30], MobileNet V2 [31], and Xception [32].
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(a)

(b) (c)

Fig. 2. Comparison of (a) standard convolution, (b) depthwise separable
convolution, and (c) bandwise-independent convolution. F1 and F2 represent
different feature map sizes, and M1 and M2 are the number of channels.

The bandwise-independent convolution inherits the character-
istics of both depthwise and pointwise convolutions. Compared
with the above two methods, bandwise-independent con-
volution uses a single 1 × 1 convolution for each input
channel independently. For the band selection task, bandwise-
independent convolution can retain the original spectral bands
by implementing information isolation among the spectral
bands. Meanwhile, the kernel weight of bandwise-independent
convolution can represent the importance of the corresponding
spectral band directly. Specifically, the larger absolute value
the kernel weight has, the more important the corresponding
spectral band is.

To discard some irrelevant, redundant, or noisy spectral
bands, hard thresholding strategy [33] is devised. If the abso-
lute value of the kernel weight is smaller than the threshold,
the corresponding value is reset to zero. On the contrary, the
corresponding value remains the same. Then, hard thresh-
olding discards some of spectral bands by constraining the
weights of the band selection layer. The spectral bands with
zero weights are discarded, and only the spectral bands with
nonzero weights are selected as the input of the next layer. In
hard thresholding, the selection of an appropriate threshold is
a critical issue. If the threshold is too large, little discriminative
information is retained by selecting few spectral bands, which
is not beneficial for classification. Conversely, some irrelevant,
redundant, or noisy spectral bands may not be discarded. To
find an appropriate threshold, the ranking-based strategy is
used in the hard thresholding. In hard thresholding, the weights
of all the spectral bands are ranked to determine the threshold.
Specifically, the weights of all the bandwise-independent con-
volution kernels are sorted, and the threshold is determined by
using the given number of selected spectral bands.

In HSIs, the training samples are represented by Xtrain =
{x1, x2, . . . , xn}, where n is the number of training samples.

Ytrain = {y1, y2, . . . , yn}, where yi(1 ≤ i ≤ n) represents the
class label corresponding to the training sample xi. Each train-
ing sample xi ∈ RN×N×B, where N × N spatial neighborhood
region is extracted to represent the current sample. B is the
number of spectral bands. The number of layers in BHCNN is
denoted as l. Fig. 3 shows the detailed architecture of the band
selection layer. In this layer, l = 1 and the training sample xi

is used as the input. A single kernel is convolved to each input
spectral band xi,k, (1 ≤ k ≤ B) and independent of other input
spectral bands. For all the B input spectral bands, there are B
kernels of size 1 × 1. w(1)

k and b(1)
k are the kth kernel weight

and bias of the band selection layer. In this way, each weight
of these kernels represents the importance of corresponding
spectral band. Then, the hard thresholding φ(·) is employed
to constrain kernel weights and only retain the weights cor-
responding to selected spectral bands. w(1)′

k = φ(w(1)
k ). f (1)′

i

represents the output calculated by w(1)′
k and xi. The band

selection layer with bandwise-independent convolution and
hard thresholding is formulated as

f (1)′
i =

{
φ
(

w(1)
k

)
� xi,k + b(1)

k |k = 1, . . . , B
}

=
{

w(1)′
k � xi,k + b(1)

k |k = 1, . . . , B
}

=
{{

w(1)
k � xi,k + b(1)

k ,

∣∣∣w(1)
k

∣∣∣ > ε

b(1)
k , else

∣∣∣∣∣k = 1, . . . , B

}

(1)

where � represents the bandwise-independent convolution.
In the hard thresholding, ε represents the threshold and
ε = sort(|w(1)|, u). In detail, sort(|w(1)|, u) means that all
the absolute values of kernel weights {w(1)

1 , w(1)
2 , . . . , w(1)

B } are
arranged in the descending order first. Then, the (u + 1)th top
value is used as the threshold. u is the number of selected
spectral bands, which is given from the beginning by the users.

B. Spatial–Spectral Feature Extraction Part Based on
Multiscale 3-D Dilated Convolutions

HSIs are 3-D data cubes, which have spatial and spectral
information simultaneously. In HSIs, different imaging con-
ditions may cause the changes of spectral characteristics with
the same class. Therefore, joint spatial–spectral feature extrac-
tion is critical for HSI classification. After the band selection
layer, feature extraction layers based on 3-D dilated convo-
lutions with various dilated rates are applied, which capture
multiscale spatial–spectral features simultaneously. As far as
we know, this application has not appeared in HSI processing.

Common 2-D convolution has been frequently used in
natural image processing. It is powerful in extracting local
spatial information from natural images. Compared with
2-D convolution, 3-D convolution is more suitable for
high-dimensional HSI classification. It can extract spectral
information as much as possible while extracting spatial
information. However, 3-D convolution instead of 2-D con-
volution in HSI classification results in the dramatic increase
in the number of parameters and computational complex-
ity. Dilated convolution [34] was proposed to exponentially
enlarge receptive fields while keeping the resolution of the
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Fig. 3. Architecture of the band selection part.

feature maps. In semantic segmentation, dilated convolution
has been successfully used. For BHCNN, dilated convolution
can be used to increase receptive fields without increasing the
learnable parameters.

By making full advantages of 3-D convolution and dilated
convolution, 3-D dilated convolution is constructed to extract
joint spatial–spectral features and reduce the computational
cost. 3-D dilated convolution inflates 3-D kernel by inserting
zeros between the kernel elements. The number of zeros is
controlled by the dilated rate. 3-D dilated convolution with
dilated rate γ introduces γ − 1 zeros into adjacent kernel
elements, which enlarges the size of an S × S × S kernel to
[S+(S−1)(γ −1)]×[S+(S−1)(γ −1)]×[S+(S−1)(γ −1)]
effectively. Compared with 3-D convolution, 3-D dilated con-
volution reduces the computational complexity when the
features with the same scale are extracted. The size of convo-
lution kernels controls how much local contextual information
can be utilized to a certain extent. To extract spatial–spectral
contextual information with different scales, 3-D dilated con-
volutions with different dilated rates are designed. The feature
maps from multiscale 3-D dilated convolutions are concate-
nated and passed through the subsequent layers. By adding
3-D dilated convolutions, the classification layer can more
effectively evaluate the performance of selected spectral bands.

The architecture of feature extraction layers based on
multiscale 3-D dilated convolutions is shown in Fig. 4.
Three kinds of 3-D dilated convolutions with dilated rates
of 1, 2, and 3 are connected after the band selection layer.
Subsequently, three feature maps are concatenated together
and further processed by the stacked 2-D convolution and max-
pooling layers. Then, a 1-D vector is achieved by flattening
the extracted feature maps, and processed by the full connec-
tion layer to produce an output. Finally, the output is used as
the input of the classification part. To alleviate the overfitting
problem, some strategies are used, such as dropout and batch
normalization.

C. Classification Part With Auxiliary Classifier

In the classification part, a final softmax-based classification
layer is connected at the end of BHCNN. The output of this
layer represents the class probability distribution obtained from
HSIs with selected bands. Inspired by Inception V1 [35], we

Fig. 4. Architecture of the multiscale spatial–spectral feature extraction part.

add an auxiliary classifier after the band selection layer, which
can assist in the selection of more discriminative bands. The
output of the band selection layer is flattened by global average
pooling and then used as the input of this auxiliary classifier.

In BHCNN, the parameter θ is represented as θ = {θ(l)} =
{w(l), b(l)}, (1 ≤ l ≤ L). L indicates the total number of layers
in BHCNN. After hard thresholding, the parameter θ ′ can be
represented as θ ′ = {θ(1)′, θ(l)} = {w(1)′, b(1), w(l), b(l)}, (2 ≤
l ≤ L). Then, the loss function of BHCNN is defined by com-
bining the losses of final and auxiliary classifiers Jfinal(θ

′) and
Jauxiliary(θ

′), which is formulated as follows:

J
(
θ ′) = Jfinal

(
θ ′) + λ · Jauxiliary

(
θ ′)

= −1

n

n∑
i=1

c∑
j=1

[
I(j = yi) · log

(
ŷfinal

j

(
θ ′; xi

))

+ λ · I(j = yi) · log
(

ŷauxiliary
j

(
θ ′; xi

))]

(2)

where ŷfinal
j (θ ′; xi) and ŷauxiliary

j (θ ′; xi) refer to the output of the
jth class from final and auxiliary classifiers, respectively. I(·)
is the indicator function. c represents the number of classes. λ

controls the weight of the auxiliary classifier.
In the test stage, the class labels Ytest = {ytest

1 , ytest
2 , . . . , ytest

m }
of test samples Xtest = {xtest

1 , xtest
2 , . . . , xtest

m } are obtained by
the final classifier, where m indicates the number of testing
samples. ytest

s (1 ≤ s ≤ m) represents the predicted label of
the test sample xtest

s , which is formulated by the following
equation:

ytest
s = arg max

j

eŷfinal
j (θ ′;xtest

s )

∑c
z=1 eŷfinal

z (θ ′;xtest
s )

, j = 1, . . . , c. (3)
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The generality of the deep learning network to different
datasets is not as good as the unsupervised methods. It is
possible to use transfer learning to alleviate this drawback to
a certain extent. In the transfer learning process, the domain
of large-scale dataset is usually defined as the source domain,
and the domain of different small-scale datasets is usually
defined as the target domain. The idea of transfer learning
is to apply the knowledge learned from the source domain to
the target domain, which improves the generality for the target
task [36].

III. OPTIMIZATION OF BHCNN

In BHCNN, a unified loss incorporates the band selection
process into the training of CNN. However, the weights of the
band selection layer are difficult to be updated because some
weights corresponding to the unselected bands are forced to
be zero by hard thresholding. Specifically, hard thresholding
consists of constant and identity functions. Since the gradient
is zero everywhere in the constant function, the chain rule in
standard backpropagation is inapplicable.

Although BHCNN uses w(1)′ to compute the loss in the
forward propagation, the original weights w(1) are used to be
updated in the backpropagation. Since the changes of original
weights w(1) are tiny during the backpropagation, the weights
w(1)′ after hard thresholding may ignore these changes, which
would cause the loss to be difficult to update [37]. In BHCNN,
b(1) and θ(l)(2 ≤ l ≤ L) are optimized in the standard back-
propagation way. However, w(1) is difficult to be optimized
for the band selection layer. In this article, the optimization of
w(1) is focused.

In the band selection layer, θ(1)′ = {w(1)′, b(1)} =
{φ(w(1)), b(1)}. In the stage of forward propagation, the param-
eter w(1) is constrained as w(1)′ by using the hard thresholding
φ(·). In the stage of backpropagation, the parameter w(1) is
updated as follows:

w(1)
k,t = w(1)

k,t−1 + η · ∂J
(
θ ′)

∂w(1)
k

∣∣∣∣∣
w(1)

k =w(1)
k,t−1

= w(1)
k,t−1 + η · ∂J

(
θ ′)

∂f (1)′ · ∂f (1)′

∂φ
(

w(1)
k

) ·
∂φ

(
w(1)

k

)

∂w(1)
k

∣∣∣∣∣∣
w(1)

k =w(1)
k,t−1

= w(1)
k,t−1 − η · 1

n

×
n∑

i=1

⎛
⎝δ

(1)
k,i

(
θ ′) ∗ rot180

(
xi,k

) ·
∂φ

(
w(1)

k

)

∂w(1)
k

⎞
⎠

∣∣∣∣∣∣
w(1)

k =w(1)
k,t−1

(4)

where w(1)
k,t represents the weight of the kth kernel of the band

selection layer in the t-th iteration. η indicates the learning
rate, which obeys the exponential decline during the iterative
process. δ

(1)
k,i (θ

′) is the error term of the kth kernel of the band
selection layer. rot180(·) means that the matrix is rotated 180◦.
∗ represents the standard convolution.

Using the definition of φ(w(1)
k ), (4) can be further trans-

formed into

w(1)
k,t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w(1)
k,t−1 − η 1

n

∑n
i=1

(
δ
(1)
k,i

(
θ ′) ∗ rot180

(
xi,k

) · 1
)∣∣∣

w(1)
k =w(1)

k,t−1∣∣∣w(1)
k

∣∣∣ > ε

w(1)
k,t−1 − η 1

n

∑n
i=1

(
δ
(1)
k,i

(
θ ′) ∗ rot180

(
xi,k

) · 0
)∣∣∣

w(1)
k =w(1)

k,t−1

else

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

w(1)
k,t−1 − η 1

n

∑n
i=1

(
δ
(1)
k,i

(
θ ′) ∗ rot180

(
xi,k

))∣∣∣
w(1)

k =w(1)
k,t−1∣∣∣w(1)

k

∣∣∣ > ε

w(1)
k,t−1, else.

(5)

As seen from (5), the weights corresponding to unselected
bands are not updated during the training process, which is
undesirable for the band selection task of HSIs.

To overcome the difficulty in training the band selection
layer by using backpropagation, the STE and coarse-to-
fine loss are devised in BHCNN, which are abbreviated as
BHCNN-STE and BHCNN-CFL. BHCNN-STE estimates the
approximate gradient of the hard thresholding. It directly
takes the gradient of the identity function as the gradient of
the hard thresholding during backpropagation. BHCNN-CFL
defines a novel loss by adding an extra branch based on full
spectral bands into the band selection layer. Compared with
BHCNN-STE, BHCNN-CFL uses the real gradient instead of
the gradient approximation and has better interpretability.

A. Optimization of BHCNN-STE

The idea of STE originates from Hinton in his lecture [38].
STE is used to optimize the neural network with binary
activation. Later, Courbariaux et al. [39] proposed a novel
BinaryConnect method. The derivative of identity function is
treated as the proxy of the original derivative of the binary
function. Binarized neural networks [40] and XNOR-Net [37]
were proposed to deal with the binarization of weights and
corresponding activations. Saturated STE was used to train
the binarized neural networks and XNOR-Net, which substi-
tutes the derivative of the sign function with 1{|x|≤1} in the
backpropagation.

In BHCNN-STE, STE uses the gradient of the identity func-
tion instead of the gradient of hard thresholding for unselected
spectral bands. It is formulated as follows:

∂φ
(

w(1)
k

)

∂w(1)
k

=
{

1,

∣∣∣w(1)
k

∣∣∣ > ε

0, else

STE≈
{

1,

∣∣∣w(1)
k

∣∣∣ > ε

1, else
≡ 1. (6)

Then, substituting (6) into (4), the update of the weight w(1)
k

under STE is rewritten as

w(1)
k,t = w(1)

k,t−1 − η
1

n

n∑
i=1

(
δ
(1)
k,i

(
θ ′) ∗ rot180

(
xi,k

))
∣∣∣∣∣
w(1)

k =w(1)
k,t−1

.

(7)
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Fig. 5. Training of the band selection layer in BHCNN-STE.

The training of the band selection layer in BHCNN-
STE is illustrated in Fig. 5. In the forward propagation of
BHCNN-STE, the original weights are constrained by the hard
thresholding. The derivative of the identity function is used
instead of the derivative of the hard threshold function in the
backpropagation.

Although STE can provide a way to update the weights
corresponding to unselected bands, the update via STE is not
well founded [41]. This is due to the discrepancy between the
hard thresholding in the forward propagation and the identity
function in the backpropagation. The update does not corre-
spond to the gradient of the forward propagation. The gradient
approximation in STE lacks interpretability.

B. Optimization of BHCNN-CFL

To improve the interpretability of STE, a new branch based
on bandwise-independent convolution is added to the band
selection layer of BHCNN. In the additional branch, the
training samples with all the spectral bands are also used
as the input. The original and additional branches differ in
whether the weights corresponding to all the spectral bands
are constrained by hard thresholding. In the additional branch,
unconstrained weights are used. Then, these weights con-
strained by hard thresholding are used as the weights of the
original branch. After additional and original branches of the
band selection layer, full and selected spectral bands are used
for subsequent layers, respectively.

According to these two branches, a novel coarse-to-fine
loss is defined by combining the losses from additional and
original branches. The coarse loss updates all the weights of
additional branch and optimizes the classification model under
full spectral bands. The fine loss is calculated by constraining
the weights from the additional branch, which selects spectral
bands and further fine-tunes the classification model. An adap-
tive adjustment factor is designed to balance the coarse and
fine losses. During the optimization process of BHCNN-CFL,
the loss gradually adjusts the focus from the coarse loss to the
fine loss. This novel coarse-to-fine loss JCFL(θ) is defined as
follows:

JCFL(θ) = σ · J(θ) + (1 − σ) · J
(
θ ′) (8)

where J(θ) is the loss related with the additional branch. The
adjustment factor σ is calculated by

σ = 1 − t

T
(9)

where T indicates the total number of iterations.
In the beginning of iterations, the coarse-to-fine loss focuses

on the coarse loss. In this case, BHCNN-CFL is inclined to
update the weights corresponding to full spectral bands and
learn a basic classification model. As the number of iterations t
increases, σ reduces from 1 to 0. The focus of the coarse-to-
fine loss shifts from the coarse loss to the fine loss. In this
case, BHCNN-CFL is inclined to select the spectral bands
based on the weights of additional branch and learn a more
accurate classification model. According to (8), the derivative
of JCFL(θ) to w(1)

k is calculated as follows:

∂JCFL(θ)

∂w(1)
k

= σ · ∂J(θ) + (1 − σ) · ∂J
(
θ ′)

∂w(1)
k

= σ · ∂J(θ)

∂f (1)
· ∂f (1)

∂w(1)
k

+(1 − σ) · ∂J
(
θ ′)

∂f (1)′ · ∂f (1)′

∂φ
(

w(1)
k

)

×
dφ

(
w(1)

k

)

dw(1)
k

= −σ · 1

n

n∑
i=1

(
δ
(1)
k,i (θ) ∗ rot180

(
xi,k

))

− (1 − σ) · 1

n

n∑
i=1

×
⎛
⎝δ

(1)
k,i

(
θ ′) ∗ rot180

(
xi,k

) ·
dφ

(
w(1)

k

)

dw(1)
k

⎞
⎠

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−σ · 1
n

∑n
i=1

(
δ
(1)
k,i (θ) ∗ rot180

(
xi,k

))

−(1 − σ) · 1
n

∑n
i=1

(
δ
(1)
k,i

(
θ ′) ∗ rot180

(
xi,k

))
∣∣∣w(1)

k

∣∣∣ > ε

−σ · 1
n

∑n
i=1

(
δ
(1)
k,i (θ) ∗ rot180

(
xi,k

))
, else.

(10)

Substituting (10) into (4), the update of w(1)
k based on the

coarse-to-fine loss is formulated as follows:

w(1)
k,t = w(1)

k,t−1 + η
∂JCFL(θ)

∂w(1)
k

∣∣∣∣∣
w(1)

k =w(1)
k,t−1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(1)
k,t−1 − η ·

[
σ · 1

n

∑n
i=1

(
δ
(1)
k,i (θ) ∗ rot180

(
xi,k

))

+ (1 − σ) · 1
n

∑n
i=1(

δ
(1)
k,i

(
θ ′) ∗ rot180

(
xi,k

))]∣∣∣
w(1)

k =w(1)
k,t−1∣∣∣w(1)

k

∣∣∣ > ε

w(1)
k,t−1 − η · σ · 1

n

∑n
i=1(

δ
(1)
k,i (θ) ∗ rot180

(
xi,k

))∣∣∣
w(1)

k =w(1)
k,t−1

, else.

(11)

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on July 02,2020 at 13:12:06 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 6. Forward and backpropagations of BHCNN-CFL.

Fig. 6 shows the forward and backpropagations of BHCNN-
CFL. In the backpropagation of BHCNN-CFL, the coarse
and fine losses are used together to update the unconstrained
weights.

Compared with BHCNN-STE, BHCNN-CFL updates the
weights corresponding to unselected spectral bands by adding
additional branch of full spectral bands. Therefore, the real
gradient is used in the optimization in BHCNN-CFL instead
of the gradient approximation in BHCNN-STE, which makes
optimization physically meaningful and has better inter-
pretability. The coarse-to-fine loss combines the losses cal-
culated by full spectral bands and selected spectral bands. It
enables BHCNN-CFL dynamically shift from the update of all
the weights and the training of basic classification model to
the selection of spectral bands and the fine-tuning of classifica-
tion model. Compared with BHCNN-STE, BHCNN-CFL has
better band selection capabilities and more powerful classifi-
cation performance. The detailed procedure of BHCNN-CFL
is summarized in Table I.

The computational complexity of BHCNN-CFL is mea-
sured by the number of learnable parameters and multiply-
accumulate (MAC) operations [42]. The corresponding results
of different types of learnable layers are recorded in Table II.
In Table II, S• represents the size of the convolution kernel.
F•

out ×F•
out indicates the spatial size of the output feature map.

The number of input and output channels is represented as M•
in

and M•
out, respectively. In the 3-D dilated convolution layer, γ

represents the dilated rate. T is the size of the output feature
map along the spectral dimension in each channel. In Table II,
the last line lists the results of BHCNN-CFL. α is the scale
number of multiscale 3-D dilated convolution. lc and lf rep-
resent the number of convolution layers and full connection
layers, respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, three benchmark HSI datasets are used to
validate the proposed BHCNN-STE and BHCNN-CFL meth-
ods. The performance of BHCNN-STE and BHCNN-CFL is
investigated from the following aspects: classification results
of HSI datasets, sensitivity to the number of training samples,

TABLE I
PROCEDURE OF BHCNN-CFL

running time, sensitivity to the number of selected spectral
bands, and so on.

A. Data Description

In this article, we adopt three HSI datasets for the experiments:
1) the Indian Pines dataset; 2) the Pavia University dataset;
and 3) the University of Houston dataset. Fig. S-1 in the
supplementary material shows the false-color composite image.

1) The Indian Pines dataset was collected over the Indian
Pines test site by the airborne visible/infrared imaging
spectrometer sensor (AVIRIS) in June 1992. It consists
of 145 × 145 pixels and 220 spectral bands. There are
some absorption bands [100-104], [150-163], and 220,
which are removed in the experiment. Sixteen vegetation
classes are included in this dataset. The bands 50, 27,
and 17 are used to show the false-color composite image
in Fig. S-1(a) in the supplementary material.

2) The Pavia University dataset was collected by the reflec-
tion optical system imaging spectrometer (ROSIS) over
Pavia, northern Italy. It has 610 × 340 pixels and
115 spectral bands. In the experiments, 103 bands are
retained by removing 12 noisy bands. The bands 53, 31,
and 8 are used to show the false-color composite image
in Fig. S-1(b) in the supplementary material.

3) The University of Houston dataset was collected by
the NSF-funded Center for Airborne Laser Mapping
using compact airborne spectrographic imager (CASI-
1500) on June 23, 2012. It covers the University of

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on July 02,2020 at 13:12:06 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FENG et al.: CONVOLUTIONAL NEURAL NETWORK BASED ON BANDWISE-INDEPENDENT CONVOLUTION AND HARD THRESHOLDING 9

TABLE II
NUMBERS OF LEARNABLE PARAMETERS AND MAC OPERATIONS OF DIFFERENT TYPES OF LEARNABLE LAYERS IN BHCNN-CFL

Houston campus and its adjacent downtown area. The
dataset comprises 1905×349 pixels, 144 spectral bands,
and 15 classes. The bands 28, 45, and 65 are used to
show the false-color composite image in Fig. S-1(c) in
the supplementary material. The dataset is obtained from
the IEEE GRSS Fusion Contest [43].

B. Experimental Setting

In this article, five representative band selection methods,
mRMR [14], TMI-CSA [15], MR-SVM [24], SICNN [26],
and DDCNN [27] are used as the comparison methods to
verify the effectiveness of the proposed BHCNN-STE and
BHCNN-CFL methods. Furthermore, SVM with the radial
basis function (RBF-SVM) [44] is also used for comparison.
Three popular indices are used to measure the classification
performance: 1) overall accuracy (OA); 2) average accu-
racy (AA); and 3) the Kappa coefficient. The Kappa coefficient
is a statistical measure of the degree of agreement, which is
calculated by considering all the elements in the confusion
matrix. It is defined by Kappa = [m

∑c
i=1 pii−∑c

i=1(
∑c

j=1 pij ·∑c
i=1 pij)]/(m2 − ∑c

j=1 pij · ∑c
i=1 pij), where pij represents

the number of samples of the jth class classified as the ith
class. The experiments are run 30 times independently for all
the methods. In the experiment, Python language and tensor-
flow library are used. GPU computation is implemented by
an NVIDIA 1080Ti graphics card.

In RBF-SVM, multiclass classification is achieved by using
the one-against-all strategy, and five-fold cross-validation
is used to determine the penalty and gamma parameters.
For mRMR, the Parzen window is used to evaluate the
mutual information, and SVM is chosen as the classifier. For

TABLE III
MAIN STRUCTURE AND PARAMETERS

OF BHCNN-STE AND BHCNN-CFL

TMI-CSA [15], the clone scale factor and the mutation prob-
ability factor are determined by searching in the range of
[500, 5000] and [1000, 10 000]. The maximum number of gen-
erations is set as 100, and the population size is set as 50. For
MR-SVM, the grid search is used to determine the parameters
of the classifier. For SICNN, the parameters in FODPSO are
suggested in [26]. Moreover, the input HSI dataset is normal-
ized in [−0.5, 0.5], and the size of the input spatial window
is 27 × 27. For DDCNN, the accuracy threshold of selected
bands is set as 0.8. The number of training epochs and learn-
ing rate are set to the default values in [27]. For BHCNN-STE
and BHCNN-CFL, the structure and parameters of the main
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TABLE IV
CLASSIFICATION RESULTS OF RBF-SVM, MRMR, TMI-CSA, MR-SVM, SICNN, DDCNN, BHCNN-STE, AND BHCNN-CFL

ON THE INDIAN PINES DATASET

network are shown in Table III. Batch-size and learning rate
are selected by the suggestion in [45] and [46]. The other
parameters are determined by a trial-and-error procedure. 20%
of the training samples are used as the validation set for param-
eter tuning. The spatial window size of the input is 15×15. In
the training process of BHCNN-STE and BHCNN-CFL, the
learning rate adopts an exponential decline method to further
reduce the loss. The initial learning rate is 0.8, and the learn-
ing rate per 100 iterations is multiplied by 0.05. The number
of iterations is 1200, and the batch size is 128. The weight of
the auxiliary classifier λ is set to 0.3.

C. Classification Results of HSI Datasets

1) The Indian Pines dataset is divided into 5% train-
ing set and 95% test set randomly. In all the band
selection methods, 100 spectral bands are selected.
The sensitivity to different numbers of selected spec-
tral bands will be investigated in Section IV-E. Table
S-I in the supplementary material shows the number
of training and test samples for each class. Table IV
records the average class-specific accuracy, OA, AA,
and Kappa of all the methods over 30 runs. The best
classification results are emphasized in gray regions. In
Table IV, TMI-CSA is superior to mRMR due to the
usage of an effective redundancy measure for classifi-
cation. In mRMR and TMI-CSA, the criteria of band
selection are independent of the chosen SVM classi-
fier. Compared with them, MR-SVM, SICNN, DDCNN,
BHCNN-STE, and BHCNN-CFL improve the classifica-
tion performance. MR-SVM and DDCNN are inferior to
SICNN. In MR-SVM, the selected bands are discarded
in the current iteration, which cannot be re-evaluated
and selected in the subsequent iterations. In DDCNN,
1DCNN is hard to extract abundant spatial information
in the Indian Pines dataset. Compared with RBF-SVM,
SICNN, DDCNN, BHCNN-STE, and BHCNN-CFL
achieve better classification performance due to the

effective band selection and hierarchical feature extrac-
tion. Compared with SICNN and DDCNN, BHCNN-
STE improves at least 8.6% in terms of OA index
by embedding the band selection into the training of
CNN and extracting multiscale spatial–spectral features
effectively. Compared with BHCNN-STE, BHCNN-
CFL further improves the classification performance,
which shows the superiority of the coarse-to-fine loss.
Among the eight methods, BHCNN-CFL obtains the
best classification performance.
The ground truth and visual classification maps of all the
algorithms are shown in Fig. S-2 in the supplementary
material. As shown in Fig. S-2(b)–(e) and S-2(g) in
the supplementary material, there are massive noisy
scattered points in RBF-SVM, mRMR, TMI-CSA,
MR-SVM, and DDCNN, especially the soybean-clean,
soybean-notill, and corn-notill classes. Compared with
these methods, SICNN, BHCNN-STE, and BHCNN-
CFL have better regional uniformity. Compared with
SICNN, BHCNN-STE, and BHCNN-CFL better main-
tain the boundaries of different classes, such as the
soybean-mintill, soybean-notill, and grass-trees classes.

2) The Pavia University dataset is divided into 3% training
set and 97% test set randomly. In all the band selection
methods, 60 spectral bands are selected. Table S-II in the
supplementary material shows the number of training
and test samples for each class. Table V records the
average class-specific accuracy, OA, AA, and Kappa of
all the methods.
As shown in Table V, compared with other meth-
ods, BHCNN-STE and BHCNN-CFL gain a certain
degree of improvement in all the classes, especially
in the bare soil and bitumen classes. For the bitu-
men class, BHCNN-STE and BHCNN-CFL have an
increase of at least 14.7% and 15.4%. Compared with
other algorithms, BHCNN-CFL improves by 11.7%,
13.6%, 12.6%, 12%, 4.4%, 9.4%, and 0.7% in terms
of OA index. The ground truth and visual classification
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TABLE V
CLASSIFICATION RESULTS OF RBF-SVM, MRMR, TMI-CSA, MR-SVM, SICNN, DDCNN, BHCNN-STE,

AND BHCNN-CFL ON THE PAVIA UNIVERSITY DATASET

TABLE VI
CLASSIFICATION RESULTS OF RBF-SVM, MRMR, TMI-CSA, MR-SVM, SICNN, DDCNN, BHCNN-STE,

AND BHCNN-CFL ON THE UNIVERSITY OF HOUSTON DATASET

maps of the Pavia University dataset are shown in
Fig. S-3 in the supplementary material. As shown in
Fig. S-3(b)–(e) and S-3(g) in the supplementary mate-
rial, many samples belonging to the bare soil class are
misclassified as the meadows class. SICNN, BHCNN-
STE, and BHCNN-CFL provide a better distinction
for these two classes by the effective usage of spatial
and spectral information. Compared with other meth-
ods, BHCNN-CFL can classify samples in the near-edge
regions more accurately and provide more similar results
to the ground truth.

3) In the University of Houston dataset, 5% training set
and 95% test set are divided randomly. In all the
band selection methods, 80 spectral bands are selected.
Table S-III in the supplementary material shows the
number of training and test samples for each class.
Table VI records the average class-specific accuracy,
OA, AA, and Kappa of all the methods. It can be
seen that compared with other methods, BHCNN-STE
and BHCNN-CFL obviously improve the classification
results in the commercial and parking_lot1 classes. For
the commercial class, BHCNN-CFL improves by 20.9%,
35.6%, 25.7%, 19.3%, 13.3%, 17.1%, and 4.4%. For
the soil and tennis_court classes, BHCNN-STE and
BHCNN-CFL achieve completely correct classification
results. Among all the eight methods, BHCNN-CFL

achieves the best classification performance. The ground
truth and visual classification maps of the University
of Houston dataset are shown in Fig. S-4 in the sup-
plementary material. RBF-SVM, mRMR, TMI-CSA,
MR-SVM, and DDCNN exhibit noisy estimations in the
classification maps, which are shown in Fig. S-4(b)–(e)
and S-4(g) in the supplementary material. Compared
with SICNN and BHCNN-STE, BHCNN-CFL keeps
better boundary characteristics in the running_track
class while performing better regional uniformity of the
soil class.

D. Sensitivity to the Number of Training Samples

Fig. 7 records the classification results of all the methods
with different percentages of training samples. Specifically,
1%, 3%, 5%, 7%, and 9% samples from each class on the
Indian Pines dataset, 1%–5% on the Pavia University dataset,
and 1%, 3%, 5%, 7%, and 9% on the University of Houston
dataset are randomly selected as the training samples. CNN-
based methods are usually heavily parameterized and sufficient
training samples are required to guarantee the performance.
When the training samples are sufficient, SICNN, DDCNN,
BHCNN-STE, and BHCNN-CFL have obvious improvement
over traditional methods. As the percentage of training samples
decreases, the classification performance of all the meth-
ods degrades. In this case, SICNN and DDCNN have no
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(a) (b) (c)

Fig. 7. OA results of RBF-SVM, mRMR, TMI-CSA, MR-SVM, SICNN, DDCNN, BHCNN-STE, and BHCNN-CFL with different percentages of training
samples on the (a) Indian Pines, (b) Pavia University, and (c) University of Houston datasets.

obvious advantage over RBF-SVM. Compared with RBF-
SVM, mRMR, TMI-CSA, MR-SVM, SICNN, and DDCNN,
BHCNN-STE and BHCNN-CFL consistently achieve supe-
rior classification performance with different percentages of
training samples. When the percentage of training sam-
ples exceeds 5% in the Indian Pines dataset, 1% in the
Pavia University dataset, and 3% in the University of Houston
dataset, BHCNN-STE and BHCNN-CFL achieve more than
90% in terms of OA index.

E. Classification Results With Fixed Number of Training
Samples

The classification performance is analyzed with the fixed
number of training samples per class for all the methods, as
shown in Tables S-IV–S-VI in the supplementary material. In
the Indian Pines dataset, 18 samples from each class are ran-
domly selected as the training set. In the Pavia University and
University of Houston datasets, 50 samples from each class are
randomly selected as the training set. The remaining samples
are used for testing.

As shown in Tables S-IV–S-VI in the supplementary mate-
rial, the proposed methods achieve better classification results
on the classes with fewer samples, such as the 1st, 7th, 13th,
and 16th classes of the Indian Pines dataset, the 9th class of the
Pavia University dataset, and the 6th class of the University
of Houston dataset. At the same time, the proposed meth-
ods maintain a relatively good classification performance on
most classes with a large number of samples. In addition, the
proposed methods obtain the best classification performance
in terms of OA, AA, and Kappa indices.

When the training and testing samples are divided propor-
tionally, the classes with a large number of samples account for
a large proportion of the overall loss. By optimizing the overall
loss, the proposed methods prefer to improve the classification
performance of these classes. When the fixed number of
training samples is selected, this problem is alleviated.

F. Investigation on Running Time

The training and test time of different algorithms for
three datasets are shown in Tables S-VII–S-IX in the sup-
plementary material. As shown in Tables S-VII–S-IX in
the supplementary material, mRMR costs less training time

than TMI-CSA due to the fast incremental search strat-
egy. Compared with mRMR and TMI-CSA, MR-SVM takes
longer training time to optimize the classifier based on the
current remaining band subset. Compared with RBF-SVM,
mRMR, TMI-CSA, and MR-SVM cost less test time by reduc-
ing the dimensionality of original spectral bands. Compared
with RBF-SVM, mRMR, and TMI-CSA, deep-learning-based
methods, SICNN, DDCNN, BHCNN-STE, and BHCNN-CFL
take longer training time due to heavily parameterized CNN
models. SICNN is very time consuming since CNN needs to be
trained repeatedly for each candidate band subset. Compared
with SICNN, DDCNN takes less training time because it only
trains the CNN model once. Compared with SICNN and MR-
SVM, BHCNN-STE and BHCNN-CFL save the training time
significantly because the band selection is embedded in the
CNN training process. During the test phase, BHCNN-STE
and BHCNN-CFL take a similar time as SICNN.

G. Sensitivity to the Number of Selected Spectral Bands

In this section, the classification performance of the eight
algorithms with different numbers of selected bands is inves-
tigated, as shown in Fig. S-5 in the supplementary material.
RBF-SVM uses all the original spectral bands and keeps stable
with different numbers of selected spectral bands.

As shown in Fig. S-5 in the supplementary material, as
the number of selected bands changes from 2 to 20 on
three datasets, the OA curves of mRMR, TMI-CSA, MR-
SVM, SICNN, DDCNN, BHCNN-STE, and BHCNN-CFL
rise sharply. This is because the increasing number of spec-
tral bands provides complementary discriminative information
for classification. As the number of selected bands changes
from 20 to 100, 20 to 60, and 20 to 80 on three datasets,
the OA curves of mRMR, TMI-CSA, MR-SVM, SICNN, and
DDCNN still rise sharply. However, the rise of BHCNN-STE
and BHCNN-CFL becomes slow. Compared with these meth-
ods, BHCNN-STE and BHCNN-CFL have potential to select
more compact subset from original spectral bands. When
the number of selected bands exceeds 100, 60, and 80 on
three datasets, the OA curves of SICNN, DDCNN, BHCNN-
STE, and BHCNN-CFL fluctuate or even drop. In this case,
these methods may select some redundant or lowly dis-
criminative bands, which hardly bring more discriminative
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TABLE VII
OA RESULTS OF COMBINING ALL BAND SELECTION METHODS

WITH KNN, SVM, ANN, AND THE PROPOSED NETWORK

ON THE INDIAN PINES DATASET

information for classification and even deteriorate the classifi-
cation performance. When different numbers of spectral bands
are selected, BHCNN-STE and BHCNN-CFL always obtain
better classification results than other methods.

H. Analysis of the Selected Spectral Bands

Figs. S-6–S-8 in the supplementary material show the spec-
tral bands selected by all the algorithms on the three datasets.
Each class is represented by the mean of samples in this class.
The selected bands are represented by the dotted lines. In Figs.
S-6(a), S-7(a), and S-8(a) in the supplementary material, RBF-
SVM uses all the bands for classification. For clarity, only
30 spectral bands per dataset are selected and displayed for
all the band selection algorithms. As shown in Figs. S-6–S-8
in the supplementary material, the spectral bands overlap-
ping in most classes are difficult to provide discriminative
information for classification, such as bands [103–106] of the
Indian Pines dataset and bands [118–122] of the University
of Houston dataset. These lowly discriminative spectral bands
are selected in mRMR and TMI-CSA due to the separation of
band selection and classification. In MR-SVM and DDCNN,
some adjacent bands are selected, such as [80-85] in the
Indian Pines dataset, [35-50] in the Pavia University dataset,
and [75-85] in the University of Houston dataset. Since the
spectral bands are approximately continuous in HSIs, adja-
cent bands often have high correlation. Compared with other
algorithms, the proposed BHCNN-STE and BHCNN-CFL
methods select more dispersed bands and cover most spec-
trums with large intervals among different classes. Generally,
the dispersed bands have more diversity and the large interval
in different classes has high discrimination.

I. Effectiveness Analysis to Each Part in BHCNN-STE and
BHCNN-CFL

In this section, some ablation experiments are added to ver-
ify the effectiveness of the proposed methods in the Indian
Pines dataset. To verify the effectiveness of band selection,
all the band selection methods are combined with conven-
tional classifiers (KNN, SVM, and ANN) and the proposed
feature extraction and classification network, as shown in
Table VII. To verify the effectiveness of multiscale 3-D dilated
convolutions and auxiliary classifier, the proposed meth-
ods without 3-D dilated convolutions (BHCNN-STE-W3DC
and BHCNN-CFL-W3DC) and without auxiliary classifier

TABLE VIII
CLASSIFICATION RESULTS OF BHCNN-STE, BHCNN-STE-WAC,
BHCNN-STE-W3DC, BHCNN-CFL, BHCNN-CFL-WAC, AND

BHCNN-CFL-W3DC ON THE INDIAN PINES DATASET

(BHCNN-STE-WAC and BHCNN-CFL-WAC) are used for
comparison, as shown in Table VIII.

As shown in Table VII, all the methods with SVM per-
form better than these methods with KNN. These methods
with ANN further improve the classification performance. The
proposed methods perform better than the comparison methods
under the same classifier. It is shown that the proposed meth-
ods can select more discriminative spectral bands. At the same
time, compared with original methods, mRMR, TMI-CSA,
MR-SVM, SICNN, and DDCNN improve the classification
performance by combining the proposed feature extraction and
classification network. This indicates that the proposed feature
extraction and classification network is beneficial for classifi-
cation. Among all the methods, the proposed methods still
achieve the best classification performance.

In Table VIII, compared with BHCNN-STE-WAC and
BHCNN-CFL-WAC, BHCNN-STE and BHCNN-CFL
improve by 1.5 % and 1.6% in terms of OA index, respec-
tively. It is shown that adding an auxiliary classifier after
the band selection layer is beneficial for classification,
which better optimizes the band selection layer. Compared
with BHCNN-STE-W3DC and BHCNN-CFL-W3DC,
BHCNN-STE and BHCNN- CFL achieve better classification
performance. This indicates that 3-D dilated convolutions with
different dilated rates improve the classification performance
by extracting multiscale spatial–spectral features.

J. Analysis of Convergence Processes in BHCNN-STE and
BHCNN-CFL

In this section, the convergence processes of BHCNN-STE
and BHCNN-CFL are shown in Fig. S-9 in the supplementary
material. The horizontal axis represents the number of itera-
tions. The vertical axis represents the training loss. As shown
in Fig. S-9 in the supplementary material, BHCNN-CFL con-
verges faster than BHCNN-STE during the first 300 iterations.
This means that the optimization of band selection with the
coarse-to-fine loss is better than that with STE at early itera-
tions. After 500 iterations, BHCNN-STE and BHCNN-CFL
gradually converge. As the number of iterations increases,
the selected spectral bands tend to be fixed. BHCNN-CFL
maintains a lower training loss than BHCNN-STE during
the iterations. The reason is that BHCNN-CFL selects more
discriminative spectral bands.

V. CONCLUSION

In this article, novel BHCNN-STE and BHCNN-CFL meth-
ods have been proposed for band selection of HSIs. To select
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the discriminative band subset from original spectral bands,
BHCNN-STE and BHCNN-CFL design the band selection
layer based on the bandwise-independent convolution and
hard thresholding. Furthermore, in order to extract multiscale
spatial–spectral features for HSIs with selected spectral bands,
3-D dilated convolutions with various dilated rates are con-
structed. To update the weights of the band selection layer,
two kinds of optimization methods based on STE and CFL
are devised. Compared with existing band selection methods,
BHCNN-STE and BHCNN-CFL embed the band selection
into the training process of CNN and jointly optimize the
band selection, multiscale spatial–spectral feature extraction,
and classification. The experimental results on several real HSI
datasets demonstrated that the proposed methods are supe-
rior to current state-of-the-art band selection methods in terms
of quantitative metrics and visual qualities of classification
maps. In the future, the fusion of band selection and more
deep architectures will be our focus to further improve the
band selection and classification performance of HSIs. In addi-
tion, the proposed band selection part will be plugged into
other deep-learning-based tasks, such as object detection and
optimized sampling and coding.
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