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Abstract: Classifying hyperspectral images (HSIs) with limited samples is a challenging issue. The 
generative adversarial network (GAN) is a promising technique to mitigate the small sample size 
problem. GAN can generate samples by the competition between a generator and a discriminator. 
However, it is difficult to generate high-quality samples for HSIs with complex spatial–spectral 
distribution, which may further degrade the performance of the discriminator. To address this 
problem, a symmetric convolutional GAN based on collaborative learning and attention mechanism 
(CA-GAN) is proposed. In CA-GAN, the generator and the discriminator not only compete but also 
collaborate. The shallow to deep features of real multiclass samples in the discriminator assist the 
sample generation in the generator. In the generator, a joint spatial–spectral hard attention module 
is devised by defining a dynamic activation function based on a multi-branch convolutional 
network. It impels the distribution of generated samples to approximate the distribution of real HSIs 
both in spectral and spatial dimensions, and it discards misleading and confounding information. 
In the discriminator, a convolutional LSTM layer is merged to extract spatial contextual features and 
capture long-term spectral dependencies simultaneously. Finally, the classification performance of 
the discriminator is improved by enforcing competitive and collaborative learning between the 
discriminator and generator. Experiments on HSI datasets show that CA-GAN obtains satisfactory 
classification results compared with advanced methods, especially when the number of training 
samples is limited. 

Keywords: generative adversarial networks; hyperspectral image classification; collaborative 
learning; hard attention module; convolutional LSTM 

 

1. Introduction 

In the past few decades, hyperspectral data have become more convenient and inexpensive to 
acquire and collect [1]. The hyperspectral image (HSI) is a three-dimensional (3D) data cube, where 
each pixel has hundreds of spectral bands, and each spectral band corresponds to a 2D image. It 
combines abundant spectral information and spatial information simultaneously. HSI processing has 
been used for many practical applications, such as military [2], agriculture [3], and astronomy [4]. 
HSI classification is the foundation for these applications, which is achieved by assigning a specific 
class to each pixel. It mainly involves two tasks: effective feature representation and advanced 
classifier design. 
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For the traditional methods, the feature extraction and the classifier training are usually 
implemented separately. There are two alternative approaches to extract features: spectral-based 
feature extraction techniques and spatial–spectral feature extraction techniques. The former one 
focuses on transforming high-dimensional HSI data into a low-dimensional space, such as principal 
component analysis (PCA) [5], discriminative local metric learning [6], and sparse graph learning [7]. 
However, it is difficult to achieve accurate classification only by extracting spectral information from 
HSIs. Thus, joint spectral–spatial feature extraction techniques have become a new trend, such as 
morphological filtering [8,9], low-rank representation [10], superpixel-based methods [11,12], etc. 
Additionally, many representative classifiers have been proposed, such as sparse representation-
based classification [13,14], decision trees [15], support vector machines (SVMs) [16–18], and random 
forests [19]. Among these classifiers, SVM aims at exploring the optimal separable hyperplane 
between different classes, which has shown robust performance in solving the small sample size and 
high-dimensional problems. 

In the deep learning-based methods, feature extraction and classifier training can be realized 
synchronously. Compared with traditional methods, handcrafted features and specific domain 
knowledge are not necessary for deep learning-based methods. Many deep learning models have 
been utilized for HSI feature extraction and classification, such as stacked autoencoders (SAEs) [20–
23], deep belief networks (DBNs) [24–27] and convolutional neural networks (CNNs) [28–33]. Chen 
et al. [20] designed a new SAE-based method by combining hierarchical feature extraction, PCA-
based dimensionality reduction, and logistic regression classification to achieve HSI classification. 
Subsequently, various improvement methods of SAE, such as Laplacian SAE [21], segmented SAE 
[22], and compact and discriminative SAE [23] were proposed. In [24], the authors use a hybrid of 
PCA, DBN-based architecture, and logistic regression for HSI classification. Later, diversified DBN 
[25], feature fusion DBN [26], and spectral-adaptive segmented DBN [27] were proposed. 

Different from SAE and DBN, CNN captures spatial dependencies by exploiting local 
connections and decreasing the number of parameters via sharing weights. In recent years, a series 
of CNN algorithms [28–33] have been developed for HSI classification. In [28], in order to extract 
spectral and spatial information, 1D-CNN and 2D-CNN are used individually. Then, these two kinds 
of features are concatenated to input the softmax layer for predicting the class labels. In [29], a 3D 
CNN (3DCNN) model was proposed to directly process the cubes of HSIs for spectral–spatial 
classification. Wu et al. [30] combined CNN and recurrent neural network (CRNN) to capture the 
spatial and spectral information. The deeper network model [31–33] is a new development direction 
of HSI classification. Song et al. [31] proposed a deep feature fusion network (DFFN) to extract the 
discriminative features of HSIs. It is implemented by utilizing the residual learning as the identity 
mapping and fusing the output of different layers. Lee et al. [32] constructed a deeper and wider 
network by using residual learning. It extracts spatial and spectral features by using a multi-scale 
convolutional filter bank. However, deeper CNNs easily lead to overfitting with limited training 
samples. To deal with this issue, Li et al. [34] designed a pixel-pair CNN model through re-organizing 
the limited training samples. 

Generative adversarial networks (GANs) [35] are another new forefront to solve the small 
sample problem. GAN is constructed by combining a generator and a discriminator. The former 
focuses on generating samples that approximate the real samples, and the latter focuses on 
distinguishing whether the inputs are generated or real samples. GAN is trained via an adversarial 
procedure. By optimizing the discriminator and the generator alternately, GAN eventually gets a 
balance. In this case, the generator generates samples having the most similar distribution to real 
samples. At the same time, the discriminator achieves the best classification result. GANs have been 
successfully applied to text-to-image synthesis [36], future frame prediction [37], image-to-image 
translation [38], etc. 

To improve the performance of GAN, many GAN-based methods mainly focus on developing 
various objective functions [39–43], generating high-quality samples [44–46], and improving training 
stability [47–50]. In the original GAN [35], Jensen–Shannon divergence is defined to estimate the 
similarity between the generated distribution and the real data distribution. It easily results in the 
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vanishing gradient problem. In response to this problem, some metrics have emerged to improve the 
performance of GAN, such as Kullback Leibler divergence [39], least squares [40], Wasserstein 
distance [41,42], and absolute deviation [43]. To improve the quality of generated samples, the 
optimization of generated samples is achieved by removing the data outliers in [44]. Moreover, some 
works change the structure of the generator, such as the usage of an online-output model [45] and 
the construction of a Laplacian pyramid framework [46]. There is a lot of work on stabilizing the 
training process of GANs, such as the design of new network architectures [47] and the usage of 
heuristic tricks [48,49]. Radford et al. [47] constructed the GAN through using CNNs, in which 
pooling layers and fully connected layers are not used. Multi-discriminator GAN frameworks [48,49] 
are designed to provide stable gradients for the generator and further stabilize the adversarial 
training process of GANs. Additionally, there are some heuristic tricks to improve the training 
stability, such as feature matching, virtual batch normalization, and one-side label smoothing [50]. 

Recently, several researchers have tried to use GAN for HSI classification. GAN-based HSI 
classification methods focus on semi-supervised GANs [51–57] and spatial–spectral GANs [58,59]. In 
semi-supervised GAN methods, some methods were proposed by combining GAN with the 
traditional techniques, such as conditional random fields [51] and 3D bilateral filter [52]. 
Additionally, Zhan et al. [53] devised a semi-supervised 1D-GAN algorithm (HSGAN) for HSI 
classification. It uses unlabeled samples to train the discriminator and generator firstly, and then 
labeled samples are used to fine-tune the well-trained discriminator for classification. Later, 
improved HSGAN methods [54,55] were proposed by adding the majority voting or the dynamic 
neighborhood voting strategies for classification. Gao et al. [56] proposed a semi-supervised multi-
discriminator GANs (MDGANs) to improve the judgment ability by averaging the results of multiple 
discriminators. In spatial–spectral GAN methods, Zhu et al. [57] proposed a 3D-GAN method to use 
both the spatial and spectral information of HSIs. 3D-GAN stabilizes the GAN training procedure by 
retaining only three principal components in HSIs, which causes 3D convolution to not actually slide 
among the spectral bands. Later, a multiclass spatial–spectral GAN method (MSGAN) was devised 
[58]. The discriminator of MSGAN is composed of a 1D and 2D convolutional structure to extract the 
spatial and spectral features of HSIs. Then, these extracted features are concatenated at the last fully 
connected layer of the discriminator to realize the spatial–spectral classification of HSIs. 

These improved GAN methods promote the classification performance of HSIs by using 
unlabeled samples or extracting spatial–spectral features. However, these methods update the 
generator only according to the judgment from the discriminator. The guide information from the 
discriminator is limited, and the generator cannot directly access the real sample distribution. Thus, 
it is difficult to ensure that the generator is always updated toward real sample distribution. When 
the HSI data are involved, the generated samples are more difficult to approximate the real samples 
with complex spatial–spectral distribution, which may further degrade the classification performance 
of the discriminator. 

In this paper, a novel symmetric convolutional GAN based on collaborative learning and 
attention mechanism (CA-GAN) is proposed for HSI classification. In CA-GAN, collaborative 
learning is devised to provide real sample information, which assists the sample generation in the 
generator. The collaborative learning is achieved by adding the shallow to deep features of real 
multiclass samples in the discriminator to the generator. Thus, the generator learns the distribution 
of real samples by collaborating and competing with the discriminator. In addition, a joint spatial–
spectral hard attention module is incorporated into the generator, which is devised by using a 
dynamic activation function and an element-wise subtraction operation based on a multi-branch 
convolutional network. It can discard some misleading and confounding features of the generated 
samples and further improve the quality of generated samples. Moreover, a convolutional LSTM 
layer is merged into the discriminator to extract spatial features and capture long-term spectral 
dependencies among spectral bands. Finally, the well-trained discriminator of CA-GAN is adopted 
for HSI classification. The classification ability of the discriminator is promoted by using the high-
quality generated samples. The innovation of this paper is summarized as follows. 
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1) A symmetric convolutional GAN is optimized in an end-to-end manner to alleviate the over-
fitting issue of HSI classification. In CA-GAN, the sample generation is guided not only by using the 
loss function from the discriminator but also by using the real sample information extracted from the 
discriminator. It prompts the generator to generate high-quality samples by using both collaborative 
and competitive learning. 

2) To learn complex spatial–spectral distribution of HSIs, joint spatial–spectral hard attention 
module emphasizes more discriminative features and suppresses less useful ones in the generation 
of both spatial and spectral dimensions. It guarantees the generated samples to approximate the real 
samples with spatial–spectral distribution. 

3) In CA-GAN, the discriminator captures global spectral dependencies instead of local 
correlation captured by the convolutional kernels in the existing GAN methods. The classification 
performance of CA-GAN is improved by extracting spatial–spectral features effectively and 
leveraging high-quality spatial–spectral generated samples. 

The remainder of this paper is organized as follows. Section 2 briefly describes the background 
of GAN. The proposed CA-GAN method is expounded in Section 3. Subsequently, Section 4 exhibits 
the experimental results and analysis. Finally, some conclusions are drawn in Section 5. 

2. Generative Adversarial Networks 

GAN is proposed by Goodfellow et al. [35], which uses a minimax game to train the generation 
model from the game theory perspective. Figure 1 shows the structure of GAN. It includes two 
networks; one is the generator 𝐺 . The goal of G  is to transform the noise variable 𝑧  into the 
generated sample 𝐺(𝑧) , which learns the distribution 𝑝ௗ௔௧௔  of real data 𝑥 . The other is the 
discriminator 𝐷, whose goal is to distinguish whether a sample is real or generated. Both 𝐺 and 𝐷 
implement non-linear mapping by using network structures, such as multi-layer perceptron. 

 
Figure 1. The original generative adversarial network (GAN) model. 

In simple terms, G  wants to deceive D  and maximize the probability that D  makes a 
mistake by generating high-quality samples, and D  wants to make the best possible distinction 
between real samples x  and generated samples G(z) . The optimization of GAN is realized by 
finding the Nash equilibrium between G  and D . G  and D  are optimized by the value 
function V(D,G) : 𝑚𝑖𝑛ீ 𝑚𝑎𝑥஽ 𝑉(𝐷,𝐺) = 𝐸௫∼௣೏ೌ೟ೌ(௫)[𝑙𝑜𝑔𝐷 (𝑥)] + 𝐸௭∼௣೥(௭)[𝑙𝑜𝑔( 1 − 𝐷(𝐺( 𝑧)))] (1) 

where 
zp (z)  represents the distribution of the noise z. 𝐸(·)represents the empirical estimation of 

the joint probability distribution. When the inputs are real samples x , the outputs of D  are 
indicated by D(x) . Similarly, the outputs D(G(z))  of D  correspond to the inputs from the 
generated samples G(z) . 

In the process of network optimization, the generator G  and the discriminator D  are 
optimized in an alternating way. Specifically, given G , we optimize D  by maximizing 𝐸௫∼௣೏ೌ೟ೌ(௫)[𝑙𝑜𝑔𝐷 (𝑥)] + 𝐸௭∼௣೥(௭)[𝑙𝑜𝑔( 1 − 𝐷(𝐺( 𝑧)))]. Then, after arriving at a fixed D  value, G  is 

G(z)

Backpropagation  

Real data

Noise 
(z)

Discriminator

Generator

 X

Real/Fake



Remote Sens. 2020, 12, 1149 5 of 26 

 

optimized by minimizing 𝐸௭∼௣೥(௭)[𝑙𝑜𝑔( 1 − 𝐷(𝐺( 𝑧)))]. After many iterations, the entire network 
has reached an optimal balance. Through the competition of two networks, D  achieves the 
best evaluation results, and G  generates the data that learns the real distribution. 

3. The Proposed CA-GAN Method 

The structure of CA-GAN is based on a symmetric convolutional GAN. CA-GAN consists of 
three parts: the generator based on a joint spatial–spectral hard attention module, the discriminator 
based on convolutional LSTM, and the classification of CA-GAN based on collaborative and 
competitive learning. The conceptual framework of CA-GAN is shown in Figure 2. As shown in 
Figure 2, in the first part, the noise and the class labels are used as the input of the generator. Then, 
the transposed convolutional layer and joint spatial–spectral hard attention module are constructed 
to generate high-quality samples both in spatial and spectral dimensions. In the next part, the 
discriminator is constructed to capture joint spatial–spectral features by merging a convolutional long 
short-term memory (ConvLSTM) layer after the convolutional layer. In the final part, the 
collaborative learning mechanism is constructed based on the generator and discriminator with 
symmetrical structure. It impels the generator to generate high-quality samples by using the shallow 
to deep features of real samples extracted by the discriminator. The discriminator can collaborate 
with the generator to optimize the objective function of the generator. At the same time, the objective 
of the discriminator is to classify the generated samples as true classes, while the objective of the 
generator is to make the discriminator mistake. The classification performance of the discriminator is 
improved through competitive learning. 

 
Figure 2. The framework of convolutional GAN based on collaborative learning and attention 
mechanism (CA-GAN). 

3.1. The Generator in CA-GAN Based on Joint Spatial–Spectral Hard Attention Module 

In GAN, the classification performance of the discriminator is improved by utilizing the 
generated samples. Generating high-quality samples is pivotal for GAN-based HSI classification. 
However, it is difficult to approach the real HSI data in spectral and spatial domains because of high-
dimensional spectral bands and various spatial distribution in HSIs. Radford et al. [47] suggested 
using transposed convolution and convolution without pooling layers and fully connected layers to 
construct the generator and discriminator in GAN. Most GAN-based HSI methods adopt this kind of 
architecture, such as HSGAN [53] and MSGAN [58]. In the generator, the transposed convolution 
operation can generate local spatial and spectral information of HSIs. However, it treats all the 
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features equally during the generation process. Actually, some features facilitate the distribution of 
generated samples to approximate that of real samples, which further promotes the classification 
performance of the discriminator. On the contrary, some poor or noisy features hinder the generation 
of high-quality samples. Therefore, it is necessary to select appropriate spatial and spectral features 
in the process of sample generation. 

In the generator of CA-GAN, the objective function of the generator is to maximize the 
probability that the discriminator classifies the generated samples as true classes. A new joint spatial–
spectral hard attention module is devised in the generator to reserve meaningful features and 
suppress less useful ones along the spatial and spectral dimensions. It refines the features by using 
an adaptive spatial–spectral attention map. This attention map is calculated based on a multi-branch 
convolutional network by using a dynamic activation function and an element-wise subtraction 
operation. The spatial–spectral hard attention module is added before each transposed convolutional 
layer of the generator. It pays varied attention to spatial and spectral contextual features 
simultaneously. Finally, after adaptive feature selection, the features of the generated samples whose 
distribution is approximate to the real sample distribution are retained, and the confused and 
misleading ones are eliminated. The main structure of the joint spatial–spectral hard attention 
module is illustrated in Figure 3. It contains three branches: the conversion branch, the mask branch 
and the original branch. The spatial–spectral attention map is obtained by using element-wise 
subtract operation between the conversion and mask branches and mapping with the dynamic 
activation function. Then, features extracted from the original branch are refined by multiplying to 
the spatial–spectral attention map. 
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Figure 3. The joint spatial–spectral hard attention module. 

In HSIs, the training samples are 3D cubes and can be represented as 𝑋௧௥௔௜௡ = {𝑥ଵ,⋅⋅⋅, 𝑥௠,⋅⋅⋅, 𝑥ெ} 
in an 𝑅௡×௡×ௗ feature space, where M  is the number of training samples, 𝑛 × 𝑛 indicates the size 
of the spatial neighborhood windows, and d is the number of spectral bands. The labels of the 
training samples are denoted as 𝑌 = {𝑦ଵ,⋅⋅⋅,𝑦௠,⋅⋅⋅,𝑦ெ}, 𝑦௠ ∈ {1, 2,⋅⋅⋅,𝐾}, where K  is the number of 
classes. In the generator of CA-GAN, a random noise z , which follows the uniform distribution 𝜇(−1,1), is used as the input. Moreover, the class label 𝑦௠ is also used as the input. After reshaping 
and transposing convolution operations on the input, the generated features are represented as 𝑔(𝑧,𝑦) ∈ {𝑔ଵ(𝑧,𝑦),⋅⋅⋅,𝑔௤(𝑧,𝑦),⋅⋅⋅,𝑔ொ(𝑧,𝑦)}, where 1 ≤ 𝑞 ≤ 𝑄 and q is the corresponding number of 
layers. These generated features are input to the joint spatial–spectral hard attention module. 

In the joint spatial–spectral hard attention module, the converted map X  and the mask map 
θ are obtained by using the convolution and softmax layers in the conversion and mask branches, 
respectively. Here, the softmax layer normalizes the feature maps in the interval of [0, 1] . The 
converted map X  measures the effectiveness of features at different spatial and spectral locations 
in the original feature map. The mask map θ is the corresponding dynamic threshold, which can 
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implement the feature elimination in the hard attention module. In the original branch, the 
convolutional layer uses 1 × 1 kernels to obtain the original feature map 𝐹ori. Then, an element-wise 
subtraction operation is implemented between the conversion map X  and mask map θ . The 
different value (𝑋 − 𝜃) is in the range of [−1, 1]. Subsequently, rectified linear unit (ReLU) is used 
to produce the spatial–spectral attention map 𝐴atte by mapping the difference value in the non-linear 
space. The activation function can be adjusted dynamically by the change of the threshold θ. After 
the mapping, the spatial–spectral attention map 𝐴atte is constrained in the range of [0,1]. Finally, the 
output feature map 𝑂௢௨௧௣௨௧  of this attention module is acquired by performing the Hadamard 
product between the spatial–spectral attention map 𝐴atte and the original feature map 𝐹ori. It can be 
formulated as follows: 

⎩⎨
⎧𝑂௢௨௧௣௨௧ = 𝐹௢௥௜ ⊙ 𝑅𝑒 𝐿 𝑈(𝑋 − 𝜃)𝐹௢௥௜ = 𝑊௢ ∗ 𝑔(𝑧,𝑦)𝑋 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊௖ ∗ 𝑔(𝑧,𝑦))𝜃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊௠ ∗ 𝑔(𝑧,𝑦))  (2) 

where ‘ ’ indicates the Hadamard product, ‘ ∗ ’ denotes the convolution operator, and cW , mW , 
and oW  are the weight matrixes of the conversion branch, the mask branch, and the original branch, 
respectively. 

The spatial–spectral attention map can pay various amounts of attention to different spatial and 
spectral features of the generated samples. When meaningful and discriminative features are 
generated, the output of the activation function is positive. In this case, the spatial–spectral attention 
map forces the conversion map X  to learn a larger score and the mask map θ to learn a smaller 
threshold. Thus, these meaningful and discriminative features are retained and emphasized in the 
generator. On the contrary, when confused and misleading features are generated, the spatial–
spectral attention map makes the mask map θ learn a larger threshold. In this case, the value of 

X( )θ−  is negative. After the activation function, the negative value becomes zero. Thus, these 
confused and misleading features can be eliminated in the generator. The dynamical activation 
function is formulated as follows. 𝑅𝑒 𝐿𝑈(𝑋−𝜃) = ൜𝑋 − 𝜃, 𝑖𝑓 𝜃 < 𝑋0, 𝑖𝑓 𝜃 ≥ 𝑋 (3) 

In CA-GAN, the generator has four transposed convolutional layers. Each transposed 
convolutional layer is constructed based on the convolutional kernel of 5 5× , and each transposed 
convolutional layer is followed by a batch normalization layer. Before each transposed convolutional 
layer, the joint spatial–spectral hard attention module is incorporated into the generator. The sizes of 
generated feature maps inputting to each attention module are 2 × 2 × 128,4 × 4 × 64,7 × 7 ×32,14 × 14 × 16, respectively. 

By analyzing the experiment, we found that embedding the joint spatial–spectral hard attention 
module in the generator has a better effect than embedding it in the discriminator. The reason may 
be that the discriminator easily outperforms the generator in most GANs. Therefore, embedding the 
joint spatial–spectral hard attention module in the discriminator has little effect on improving the 
classification ability of the discriminator, while embedding it in the generator will improve the 
generator significantly and assist the generator in generating high-quality samples. 

3.2. The Discriminator in CA-GAN Based on Convolutional LSTM for Joint Spatial–Spectral Feature 
Extraction 

HSIs often include hundreds of spectral bands, which have provided valuable information to 
identify different land-cover classes. However, it is worth noting that the usage of only spectral 
information easily causes the degradation of classification performance, especially for the samples of 
the same class with different spectrums and the samples of different classes with similar spectrum. 
In the discriminator of CA-GAN, HSIs are considered as spatial–spectral sequences. The 
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convolutional long short-term memory (ConvLSTM) [59] model is attempted to construct and extract 
joint spatial–spectral features for HSI classification. ConvLSTM is a modification of LSTM. LSTM can 
deal with the temporal sequence. The hyperspectral data are densely sampled from the visible to 
infrared spectrum. Since the spectral bands are approximately continuous, adjacent spectral bands 
have high correlation. Moreover, non-adjacent spectral bands may have long-term correlation. Thus, 
in ConvLSTM, the LSTM model is used to extract long-term spectral dependence in the spectral 
domain, and the convolution operator is incorporated into the LSTM network to extract spatial 
features across the spatial domain. 

In CA-GAN, the input of the discriminator is the training sample 
ix  and the generated sample 𝐺(𝑧,𝑦௜) . The main construction of the discriminator in CA-GAN is shown in Figure 4. In the 

discriminator, hierarchical features of input samples are extracted by four convolutional layers. 𝑑(·) represents the features extracted by these convolutional layers, which is considered from the 
perspective of the spatial–spectral sequence. These features are input to ConvLSTM along the spectral 
channel sequentially. ConvLSTM captures the long-range dependencies among spectral bands by 
using the memory cell, and it extracts spatial information by using the convolution operator in the 
forget and input gates. 

 
Figure 4. The discriminator in CA-GAN based on convolutional long short-term memory (Conv 

LSTM). 

Specifically, features 𝑑(·) are divided into several 3D cubes (𝑑(·)ଵ,⋅⋅⋅,𝑑(·)௦,⋅⋅⋅,𝑑(·)ௌ) along the 
spectral channel, where S  is the number of cubes. (𝑑(·)ଵ,⋅⋅⋅,𝑑(·)௦,⋅⋅⋅,𝑑(·)ௌ)  is used to input to 
ConvLSTM in sequence. At the s -th moment, 𝑑(·)௦  is input to ConvLSTM. 𝑐௦ିଵ  and ℎ௦ିଵ 
represent the memory cell and hidden state of the 1-s -th moment, respectively. The current 
memory cell 𝑐௦ is updated by calculating the input 𝑑(·)௦, the memory cell 𝑐௦ିଵ, and the hidden state ℎ௦ିଵ through the forget and input gates 𝑓௦ and 𝑖௦. The current hidden state ℎ௦ is computed via the 
forget gate 𝑓௦, the input gate 𝑖௦, and the output gate 𝑜௦. Then, at the 1+s -th moment, the output 𝑜௦ାଵ of the 1+s -th moment is calculated by the hidden state ℎ௦ of the previous moment and the 
input of the 1+s -th moment 𝑑(·)௦ାଵ. The memory cell 𝑐௦ାଵ and hidden state ℎ௦ାଵ of the 1+s -th 
moment are updated in the same way as that of the s-th moment. Finally, long-term spectral 
dependencies are extracted through the recursion of the previous cell to the next cell. At each 
moment, spatial information is extracted by the convolution operation of the input gate from the 
current moment and the forget gate from the previous hidden state. Thus, the spatial contextual 
correlation and long-term spectral dependencies of generated samples and real samples can be 
captured simultaneously in the discriminator of CA-GAN. 

In the discriminator of CA-GAN, the input is the real samples and the generated samples with 
the same size of 27 × 27 × 20 . The discriminator extracts hierarchical features by using four 
convolutional layers with the convolutional kernel size of 5 × 5 . The sizes of the feature maps 
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extracted by convolutional layers are 14 × 14 × 16,7 × 7 × 32,4 × 4 × 64,2 × 2 × 128, respectively. 
Then, the ConvLSTM layer is merged after the convolutional layer to extract joint spatial–spectral 
information. In ConvLSTM, the padding operation is used during the convolution process, and the 
size of the convolutional kernel is 2 × 2. Next, a fully connected layer is added after the ConvLSTM 
layer. Finally, the classification is implemented through a softmax layer in the discriminator. The 
softmax classifier predicts the class 𝑦 ∈ {1,2,⋅⋅⋅,𝐾,𝐾 + 1}  of input samples. In this process, the 
objective function of the discriminator is to maximize the probability of classifying the real samples 
as true K  classes and the generated samples as the 1+K -th class. 

3.3. Classification of CA-GAN Based on Collaborative and Competitive Learning 

In HSIs, the generation task is notoriously difficult due to the increasing data complexity, such 
as high dimension and complex spatial distribution. In GAN, the quality of the generated samples is 
not guaranteed, which may further degrade the classification performance of the discriminator. In 
addition, when the samples are generated by the generator, the generator itself has no way to evaluate 
the generated samples directly. GAN only uses the judgment of the discriminator to learn the 
distribution of real samples, which acts as a loss function to provide a learning signal to the generator. 
The generator is improved through the competition process between the generator and the 
discriminator. However, it is difficult to generate complex HSI data by only using the objective 
function. Moreover, the classification ability of the discriminator is easily superior to the generation 
ability of the generator. It indicates that there is information in the discriminator that the generator 
can use to assist sample generation. Inspired by this idea, CA-GAN uses additional information from 
the discriminator to assist sample generation in the generator. 

In CA-GAN, a collaborative learning mechanism is devised between the generator and the 
discriminator, which is achieved by adding shallow and deep features of real multiclass samples in 
the discriminator to the generator. It is constructed by fusing each corresponding feature map of the 
same size in the generator and the discriminator. In the generator, the fused generated features are 
input to the next layer. This mechanism brings many advantages. It breaks the way of traditional 
optimization of only using competition between the generator and the discriminator. By utilizing 
additional information from the discriminator, the generator of CA-GAN can not only compete but 
also collaborate with the discriminator. Additionally, it alleviates the problem that the generator is 
optimized only by using the objective function from the discriminator. By utilizing the collaborative 
learning, the diversity of the generated samples can be improved. In this way, it is not easy to suffer 
from mode collapse. 

The specific process of the collaborative learning mechanism is as follows. In the discriminator 
of CA-GAN, the generated samples and real samples are used as the input. The features extracted by 
four convolutional layers from real samples are represented as 𝑑(𝑥௜) = {𝑑ଵ(𝑥௜),𝑑ଶ(𝑥௜),𝑑ଷ(𝑥௜),𝑑ସ(𝑥௜)}. 
In the generator of CA-GAN, features generated by four transpose convolutional layers have the 
same sizes as the features extracted by four convolutional layers in the discriminator. By summing 
the features from real samples in the discriminator and the corresponding generated features of equal 
sizes in the generator, the new fused generated features 𝑔∗(𝑧,𝑦௜) =൛𝑔ଵ∗(𝑧,𝑦௜),𝑔ଶ∗(𝑧,𝑦௜),𝑔ଷ∗(𝑧,𝑦௜),𝑔ସ∗(𝑧,𝑦௜)ൟ are generated. These features are formulated as follows: 𝑔௨∗(𝑧,𝑦௜) = 𝑔௨(𝑧,𝑦௜) ⊕𝑑௝(𝑥௜) (4) 

where 𝑑௝(𝑥௜) represents the real sample features of the discriminator with the same size as the 
generated features 𝑔௨(𝑧,𝑦௜), and ‘ ⊕ ’ represents the element-wise summation operation. 

In CA-GAN, the novel adversarial and collaborative objective functions of G  and D  are 
defined as follows: 
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⎩⎪⎨
⎪⎧𝑙ீ = ෍𝑙(𝐷(𝐺(𝑧,𝑑ଵ(𝑥௜),𝑑ଶ(𝑥௜),𝑑ଷ(𝑥௜),𝑑ସ(𝑥௜),𝑦௜),𝑦௜))ே

௜ୀଵ𝑙஽ = ෍𝑙(𝐷(𝑥௜)ே
௜ୀଵ ,𝑦௜) + ෍𝑙(𝐷(𝐺(𝑧,𝑑ଵ(𝑥௜),𝑑ଶ(𝑥௜),𝑑ଷ(𝑥௜),𝑑ସ(𝑥௜),𝑦௜),𝑦௄ାଵ))ே

௜ୀଵ
 (5) 

where Dl  and Gl  represent the objective functions of the discriminator and the generator. 𝐷(·) 
indicates the discriminator output, and 𝑙(·) expresses the cross entropy. 

As shown in Equation (5), for the real samples, the first term ∑ 𝑙(𝐷( 𝑥௜),𝑦௜)ே௜ୀଵ  of Dl  indicates 
that the discriminator expects to have a high probabilities to their true classes. For the generated 
samples, Gl  and Dl  are not only adversarial, but also collaborative to each other. On the one hand, 

Gl  indicates that the generator expects the discriminator to classify the generated samples as true 
classes, while Dl  expects to classify these generated samples as 𝑦௄ାଵ. On the other hand, the real 
sample features {𝑑ଵ(𝑥௜),𝑑ଶ(𝑥௜),𝑑ଷ(𝑥௜),𝑑ସ(𝑥௜)}  from the discriminator are used to collaborate the 
sample generation in the generator. By using the collaborative learning, high-quality samples are 
generated. At the same time, the classification ability of the discriminator is facilitated by using 
competitive learning. Finally, after the generator and discriminator are updated by alternating 
optimization, the well-trained discriminator in CA-GAN is used for HSI classification. 

3.4. The Procedure of CA-GAN 

The proposed CA-GAN method combines a joint spatial–spectral hard attention module, 
convolutional LSTM, and collaborative learning mechanism into a unified optimization procedure. 
The detailed process of the designed CA-GAN method is described in Table 1. 

Table 1. The procedure of convolutional GAN based on collaborative learning and attention 
mechanism (CA-GAN) method. 

1. INPUT: The training data { }Mmtrain xxxX ,,,,1 ⋅⋅⋅⋅⋅⋅=  and the test data 
test test test

test 1 2 RX x x x{ , , , }= ⋅⋅⋅  from 

K  classes, the class labels of training samples { }k Ky y y y1 , , , ,∈ ⋅⋅⋅ ⋅⋅⋅ , the mini-batch size B, the number 

of training epochs E 
2. Begin 

3. Initialize: randomly initialize the parameters 
dθ  and gθ  of the discriminator and the generator 

4. For E epochs do  

5. For m  training samples { }mx x x1 2, , ,⋅⋅⋅  of every mini-batch 

6. Generate m  noises { }mz z z1 2, , ,⋅⋅⋅  from uniform distribution 1 1( , )μ −  

7. Concatenate noises with the class labels { }1 2, , , my y y⋅⋅⋅  

8. Input the training samples into the discriminator to obtain the real sample features 

{ }i i i i id x d x d x d x d x1 2 3 4( )= ( ) ( ), ( ), ( ),  

9. Input noises { }⋅⋅⋅ mz z z1 2, , , , class labels { }⋅⋅⋅ my y y1 2, , , , and real sample features 

{ },i i i i id x d x d x d x d x1 2 3 4( )= ( ) ( ), ( ), ( )  to the generator G  

10. Generate features { }q Qg z y g z y g z y g z y1( , )= ( , ) , ( , ), , ( , )⋅ ⋅⋅ ⋅ ⋅ ⋅,  

11. Obtain the fused generated features { },i i i i ig z y g z y g z y g z y g z y
* * * ** 1 2 3 4( , )= ( , ) ( , ), ( , ), ( , )  by 

using Equation (4)  

12. Generate samples { }
=

m

i i i i i i
G z d x d x d x d x y1 2 3 4

1
( , ( ), ( ), ( ), ( ), )  by using the fused generated features 
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4. Experimental Results 

In this part, three challenging hyperspectral datasets were adopted to verify the effectiveness of 
the proposed CA-GAN method. Some advanced HSI classification algorithms, radial based function 
(RBF)-SVM [17], SAE [20], DBN [24], pixel-pair features (PPF)-CNN [34], CRNN [30], HSGAN [53], 
and 3D-GAN [57] are used for comparison. 

4.1. Data Description 

The detailed description of three hyperspectral datasets is displayed as follows. 
1) Indian Pines: This scene was obtained in 1992 from Northwest Indiana. It contains 145145×  

pixels and 224 spectral bands. In this paper, 200 spectral bands are adopted for analysis. The Indian 
Pines dataset contains 16 vegetation classes. The false-color image (bands 50, 27, 17) and its ground 
truth are shown in Figures 5a and 6a. 

2) Pavia University: Pavia University was captured in 2002 from northern Italy. It is composed 
of 610 × 340 pixels and 115 spectral bands. It includes 9 classes. In this paper, 103 spectral bands are 
analyzed after removing 12 noise bands. Figures 5b and 6b show the false-color composite image 
(bands 53, 31, 8) and the ground truth of this dataset. 

 

13. Input generated samples and training samples to the discriminator 
14. Compute the objective function Dl  of the discriminator 

15. Update the parameters gθ  of the generator G  by minimizing 
Gl  

16. 
N

G i i i i i i
i

l l D G z d x d x d x d x y y1 2 3 4

1
( ( ( , ( ), ( ), ( ), ( ), ), ))

=

=   

17. Update the parameters 
dθ  of the discriminator D  by minimizing 

Dl  

18. 
N N

D i i i i i i i K
i i

l l D x y l D G z d x d x d x d x y y1 2 3 4
1

1 1
( ( ), ) ( ( ( , ( ), ( ), ( ), ( ), ), ))+

= =

= +   

19. End for 
20. End for  

21. Classify the test data 
test test test

test 1 2 RX x x x{ , , , }= ⋅⋅⋅  by the trained discriminator 

22. END 
23. OUTPUT: the labels of the test samples 

te stX  
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Figure 5. False-color composite image. (a) Indian Pines, (b) Pavia University, and (c) Washington. 

 
Figure 6. Ground truth. (a) Indian Pines, (b) Pavia University, and (c) Washington. 

3) Washington: The Washington dataset was obtained at the Washington DC mall in 1995. It 
includes 750 × 307pixels, and the geometric resolution of each pixel is 2.8 m. In the experiments, 191 
spectral bands are used for analysis. It includes 7 different categories. Figures 5c and 6c show the 
false-color composite image (bands 70, 53, 50) of the Washington dataset and the ground truth. 

4.2. Experimental Setting 

To demonstrate the effectiveness of the CA-GAN algorithm, seven representative HSI 
classification methods are used for comparison, including RBF-SVM [16], SAE [20], DBN [24], PPF-
CNN [34], CRNN [30], HSGAN [53], 3D-GAN [57]. In the experiment, the size of inputs will affect 
the classification performance. For fair comparison, all the comparison algorithms use their optimal 
parameters. For RBF-SVM, five-fold cross-validation is utilized to obtain the penalty and gamma 
parameters. In SAE, the radius of the spatial window is set as 7. For DBN, the spatial window of 5 × 5 
is used as the input to the network. For PPF-CNN, the value of the spatial window size is set 
according to the literature [34]. For CRNN, the batch size is set as 128, and other parameters are 
suggested in the literature [30]. For HSGAN, as suggested in [53], the convolutional kernel size is set 
as 1 × 3 and 1 × 5, and the number of training epochs is set as 200. For 3D-GAN, the spatial window 
of 3D input is set as 64 × 64 × 3, and the convolutional kernel sizes are set according to the literature 
[57]. 

In CA-GAN, the main architecture and parameters are listed in Table 2. In Table 2, G  and D  
represent the generator and the discriminator. As suggested in the literature [57], the dimension of 
input noise z  is 1×1×100 , and the number of training epochs is 600. By using a trial-and-error 
procedure, the learning rates of the discriminator and generator are 0.008 and 0.035. In the process of 
data acquisition, PCA is used to reduce the dimensionality and retain 20 principal components of 
HSIs. Then, each sample of reduced HSI data is represented by using a 27×27 spatial window centered 
on this sample. In this way, a 27×27×20 cube is extracted to represent each sample in HSIs. 

In this paper, the overall accuracy (OA), average accuracy (AA), and Kappa coefficient (Kappa) 
are adopted to evaluate the classification performance of each algorithm. The final results are 
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acquired by training 30 times independently. The experiments are based on the TensorFlow library 
on NVIDIA 2080Ti graphics card and are completed by Python language. 

Table 2. The detailed and main structure of CA-GAN. 

Network No Layer Operation Activation Output size 

G 

1 Hard Attention 

:
:
:

conv 3 3
conv 3 3
conv 1 1

 ×
 ×
 ×

 

soft max
soft max



−

 128×2×2  

2 Deconvolution 5 5 64× ×  ReLU 64×4×4  

3 Hard Attention 

:
:
:

conv 3 3
conv 3 3
conv 1 1

 ×
 ×
 ×

 

soft max
soft max



−

 6444 ××  

4 Deconvolution 5 5 32× ×  ReLU 3277 ××  

5 Hard Attention 

:
:
:

conv 3 3
conv 3 3
conv 1 1

 ×
 ×
 ×

 

soft max
soft max



−

 3277 ××  

6 Deconvolution 5 5 16× ×  ReLU 161414 ××  

7 Hard Attention 

:
:
:

conv 3 3
conv 3 3
conv 1 1

 ×
 ×
 ×

 

soft max
soft max



−

 161414 ××  

8 Deconvolution 5 5 20× ×  Tanh 202727 ××  

D 

1 Convolution 5 5 16× ×  ReLU 161414 ××  

2 Convolution 5 5 32× ×  ReLU 3277 ××  

3 Convolution 5 5 64× ×  ReLU 6444 ××  

4 Convolution 5 5 128× ×  Tanh 12822 ××  

5 ConvLSTM 2 2 128× ×  Tanh/Sigmoid 12822 ××  

6 FC - - 51211 ××  

7 - - Softmax 
)1( +× Km  

classes 

4.3. Experimental Results 

1) Classification results of the Indian Pines dataset: For the labeled samples, we randomly 
selected 5% from each class for training. Table 3 lists the number of training and test samples in the 
experiment. The quantitative evaluations of various methods are displayed in Table 4. Table 4 
includes the classification accuracies of different classes, and OA, AA, and Kappa for different 
methods. Among eight algorithms, the best accurate values are emphasized by marking with gray. 

As shown in Table 4, deep learning-based methods are superior to RBF-SVM by extracting 
hierarchical non-linear features. PPF-CNN achieves better classification results than SAE and DBN 
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by expanding the training samples. CRNN obtains better classification results than PPF-CNN by 
using recurrent neural network (RNN) to capture the spectral dependence of HSIs. Compared with 
HSGAN, 3D-GAN improves the classification performance because it fully use joint spatial–spectral 
information. Among these comparison methods, CA-GAN obtains the best classification 
performance in most classes by leveraging generated samples with high quality, especially in the 
classes having fewer samples. Additionally, among all the comparison methods, CA-GAN achieves 
the best classification accuracies in the OA, AA, and Kappa, which improve by at least 3.9%, 3.1% 
and 3.9%, respectively. 

The classification visualization of various algorithms on the Indian Pines is shown in Figure 7. 
From Figure 7a,h we can see that RBF-SVM, SAE, DBN, PPF-CNN, and HSGAN have some visual 
noisy scattered points and misclassify many samples in the alfalfa, grass-pasture-mowed, oats, and 
buildings-grass-trees-drives classes. Compared with these methods, CRNN, 3D-GAN, and CA-GAN 
significantly reduce the noisy scattered points and effectively improve the regional uniformity. In 
comparison with other methods, CA-GAN has better regional uniformity in the wheat and corn-
mintill classes, and it shows more accurate boundary of the grass-trees class. 
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Table 3. Training and testing samples for each class of the Indian pines dataset. 

Class Number of samples 
No Name Training Test Total 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Alfalfa 
Corn-notill 

Corn-mintill 
Corn 

Grass-pasture 
Grass-trees 

Grass-pasture-mowed 
Hay-windrowed 

Oats 
Soybean-notill 

Soybean-mintill 
Soybean-clean 

Wheat 
Woods 

Buildings-Grass-Trees-Drives 
Stone-Steel-Towers 

2 
71 
42 
12 
24 
36 
1 
24 
1 
49 

123 
30 
10 
63 
19 
5 

42 
1357 
788 
225 
459 
694 
27 

454 
19 

923 
2332 
563 
195 
1202 
367 
88 

46 
1428 
830 
237 
483 
730 
28 
478 
20 
972 

2455 
593 
205 

1265 
386 
93 

Total 512 9737 10,249 

Table 4. Classification accuracies of various algorithms on the Indian Pines dataset. 

Class RBF-SVM SAE DBN PPF-CNN CRNN HSGAN 3D-GAN CA-GAN 

1 6.1 ± 11.2 10.0 ± 6.4 13.6 ± 5.6 30.4 ± 8.4 81.8 ± 6.7 17.7 ± 5.2 90.9 ± 5.2 95.5 ± 4.5 

2 72.9 ± 3.6 79.7 ± 2.3 79.8 ± 2.9 89.2 ± 2.1 91.5 ± 1.4 66.3 ± 1.1 91.0 ± 1.7 96.4 ± 2.1 

3 68.0 ± 3.6 74.9 ± 4.8 70.5 ± 2.2 77.1 ± 2.7 91.8 ± 2.1 60.2 ± 2.9 90.4 ± 2.1 96.5 ± 2.3 

4 59.0 ± 15.0 62.8 ± 8.3 71.3 ± 6.6 87.7 ± 3.7 86.3 ± 0.4 57.8 ± 4.7 93.7 ± 4.3 95.0 ± 4.7 

5 87.0 ± 4.5 84.2 ± 3.3 80.1 ± 4.1 94.7 ± 1.0 94.1 ± 0.7 82.0 ± 6.1 93.2 ± 4.5 96.1 ± 4.0 

6 92.4 ± 2.0 94.3 ± 1.7 94.2 ± 2.4 93.1 ± 1.9 95.2 ± 1.0 94.3 ± 2.2 95.4 ± 0.7 99.6 ± 0.4 

7 0.0 ± 0.0 24.4 ± 18.8 28.1 ± 22.6 0.0 ± 0.0 64.1 ± 12.4 23.8 ± 12.2 94.9 ± 0.1 94.9 ± 0.1 

8 98.1 ± 1.4 98.8 ± 0.4 98.5 ± 1.5 99.6 ± 0.3 100 ± 0.0 98.8 ± 0.3 99.9 ± 0.1 100 ± 0.0 

9 0.0 ± 0.0 11.1 ± 10.1 9.5 ± 2.4 0.0 ± 0.0 33.1 ± 9.3 13.7 ± 12.1 53.5 ± 1.4 55.7 ± 9.8 

10 65.8 ± 3.7 73.6 ± 3.8 73.2 ± 4.7 85.6 ± 2.8 87.6 ± 12.1 68.5 ± 3.6 94.2 ± 0.3 98.6 ± 0.3 

11 85.3 ± 2.9 83.4 ± 2.0 82.7 ± 2.2 83.8 ± 1.6 98.4 ± 0.2 79.7 ± 0.5 94.7 ± 1.5 99.7 ± 0.2 

12 69.6 ± 6.5 70.4 ± 8.0 62.0 ± 5.8 91.4 ± 3.1 84.7 ± 2.7 48.8 ± 4.5 92.1 ± 2.3 92.3 ± 3.4 

13 92.3 ± 4.1 94.2 ± 4.3 95.7 ± 10.6 97.8 ± 0.9 78.7±3.4 89.2±2.7 95.5±0.2 97.9±1.6 

14 96.6 ± 1.0 94.2 ± 1.5 94.4 ± 1.6 95.5 ± 1.1 92.5±0.1 96.0±1.1 95.6±0.3 98.7±0.4 

15 41.7 ± 7.0 66.1 ± 5.6 64.2 ± 6.5 78.0 ± 2.4 83.1±3.7 37.9±11.4 87.7±2.1 92.3±1.0 

16 75.2 ± 9.0 87.6 ± 8.1 80.5 ± 13.2 97.3 ± 1.3 94.3±0.5 73.0±5.3 92.6±2.3 98.9±1.1 

OA(%) 77.8 ± 0.8 81.9 ± 0.1 80.6 ± 0.1 87.9 ± 0.8 93.0±0.5 74.0±0.9 93.5±0.3 97.4±0.5 

AA(%) 61.3 ± 1.4 69.4 ± 1.9 68.3 ± 1.7 76.5 ± 0.6 92.1±2.1 60.2±2.6 84.8±2.7 95.2±2.2 

Kappa(%) 74.5 ± 1.0 79.3 ± 1.1 77.8 ± 1.3 86.3 ± 0.9 92.9±0.8 70.0±1.0 93.1±1.2 97.0±0.6 
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Figure 7. Classification visualization on the Indian Pines dataset obtained by (a) radial based function 
(RBF)-support vector machines (SVM); (b) stacked autoencoders (SAE); (c) deep belief networks 
(DBN); (d) pixel-pair features (PPF)-convolutional neural networks (CNN); (e) convolutional 
recurrent neural network (CRNN); (f) semi-supervised 1D-GAN algorithm (HSGAN); (g) 3D-GAN 
and (h) CA-GAN. 

2) Classification results of the Pavia University dataset: We randomly selected 2% of the labeled 
data to train the network. The number of training and test samples is shown in Table 5. Table 6 shows 
the quantitative results of various methods. The most accurate results of the eight algorithms are 
marked by gray. 

Table 5. Training and testing samples for each class of Pavia University. 

Class Number of samples 
No Name Training Test Total 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Asphalt 
Meadows 

Gravel 
Trees 

Painted metal sheets 
Bare Soil 
Bitumen 

Self-Blocking Bricks 
Shadows 

199 
559 
63 
92 
40 
151 
40 
110 
28 

6233 
17,531 
1973 
2880 
1265 
4727 
1250 
3462 
891 

6631 
18,649 
2099 
3064 
1345 
5029 
1330 
3682 
947 

Total 1282 40,212 42,776 

As shown in Table 6, PPF-CNN and CA-GAN have classified the painted metal sheet class 
completely correctly. The classification result of gravel and bitumen classes is significantly improved 
by CA-GAN. CA-GAN improves by at least 23.8% compared with PPF-CNN in the bitumen class. 
For the gravel class, CA-GAN improves by 37.6%, 29.0%, 30.8%, 31.8%, 11.8%, 15.8%, 9.6% compared 
with the other seven methods by using high-quality generated samples. The classification accuracies 
of CA-GAN for all the classes are over 96%. Moreover, CA-GAN exhibits the best classification 
performance in three evaluation indexes. 
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The classification visualization of various algorithms on the Pavia University is shown in Figure 
8. As shown in Figure 8, the bare soil class is misclassified by RBF-SVM, SAE, DBN, PPF-CNN, and 
HSGAN. Compared with these methods, CA-GAN shows greater regional uniformity in this class. 
Many samples in the bitumen class have been misclassified due to the similar spectral signature with 
the asphalt class. CA-GAN improves the classification of these two classes. Compared with other 
seven algorithms, CA-GAN has better boundary integrity in the shadows class and better regional 
uniformity in the gravel and self-blocking bricks classes. 

Table 6. Classification accuracies of various algorithms on the Pavia University dataset. OA: overall 
accuracy, AA: average accuracy. 

Class RBF-SVM SAE DBN PPF-CNN CRNN HSGAN 3D-GAN CA-GAN 
1 89.1 ± 1.0 91.7 ± 0.3 90.6 ± 0.7 97.1 ± 0.8 90.2 ± 0.1 80.7 ± 38.3 88.9 ± 0.1 99.1 ± 0.2 
2 95.3 ± 0.3 96.1 ± 0.7 96.9 ± 0.1 95.2 ± 0.7 99.0 ± 0.4 94.4 ± 1.5 99.8 ± 0.1 99.9 ± 0.1 
3 61.6 ± 4.8 70.2 ± 1.5 68.4 ± 2.7 67.4 ± 6.8 87.4 ± 0.7 83.4 ± 4.6 89.6 ± 0.4 99.2 ± 0.2 
4 89.1 ± 1.1 89.4 ± 1.4 89.7 ± 1.4 90.7 ± 6.8 88.7 ± 1.3 90.9 ± 1.9 94.8 ± 0.2 97.0 ± 2.3 
5 96.2 ± 0.7 96.1 ± 0.7 96.0 ± 0.9 100.0 ± 0.0 90.7 ± 0.7 80.2 ± 10.1 99.8 ± 0.1 100 ± 0.0 
6 77.0 ± 2.3 85.1 ± 0.9 84.0 ± 1.4 79.4 ± 2.8 96.5 ± 1.1 76.2 ± 3.3 99.8 ± 0.1 99.6 ± 0.3 
7 73.9 ± 3.1 76.9 ± 2.3 74.1 ± 3.8 76.0 ± 7.2 83.1 ± 0.9 83.0 ± 2.0 96.1 ± 0.1 99.8 ± 0.2 
8 84.5 ± 1.2 83.8 ± 0.9 84.0 ± 0.7 86.4 ± 3.9 84.2 ± 10.3 83.1 ± 3.9 88.4 ± 0.2 97.5 ± 0.3 
9 98.5 ± 0.1 97.4 ± 0.7 98.0 ± 0.2 94.4 ± 1.7 67.8 ± 1.5 92.7 ± 2.4 90.8 ± 5.3 96.5 ± 1.7 

OA (%) 88.5 ± 0.8 91.8 ± 0.1 90.2 ± 0.1 92.2 ± 0.7 95.4 ± 0.4 85.4 ± 2.4 97.0 ± 0.1 99.2 ± 0.6 
AA (%) 85.6 ± 0.3 88.4 ± 0.6 89.1 ± 0.2 87.8 ± 0.9 83 ± 4.5 81.0 ± 1.0 92.1 ± 0.4 98.6 ± 1.2 

Kappa (%) 86.1 ± 0.6 88.7 ± 0.3 88.9 ± 0.3 89.5 ± 0.9 92.5 ± 0.4 80.9 ± 3.2 96.0 ± 0.3 99.2 ± 0.7 

 
Figure 8. Classification visualization on the Pavia University dataset obtained by (a) RBF-SVM, (b) 
SAE, (c) DBN, (d) PPF-CNN, (e) CRNN, (f) HSGAN, (g) 3D-GAN, and (h) CA-GAN. 
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3) Classification results of the Washington dataset: we randomly picked 3% of the labeled 
samples to train the CA-GAN. The number of training and test samples is listed in Table 7. Table 8 
shows the quantitative results of various methods. From Table 8, RBF-SVM misclassifies many 
samples in the roofs class, and CRNN misclassifies many samples in the water class. Compared with 
RBF-SVM, CA-GAN improves by 10.6% for the roofs class. Compared with CRNN, CA-GAN 
improves by 13.4% for the water class. Compared with other seven methods, CA-GAN obtains the 
highest OA, AA, and Kappa values. It improves by 5.8%, 4.9%, 5.4%, 3.8%, 3.6%, 7.0%, and 2.3% 
compared with the other seven methods in the OA index. 

Table 7. Training and testing samples for each class of the Washington dataset. 

Class Number of samples 
No Name Training Test Total 
1 
2 
3 
4 
5 
6 
7 

Roads 
Grass 
Water 
Roofs 
Trails 
Trees 

Shadows 

86 
51 
19 
31 
38 
35 
168 

2787 
1663 
611 

1005 
1240 
1118 
5443 

2873 
1714 
630 

1036 
1278 
1153 
5611 

 Total 428 13,867 14,295 

Table 8. Classification accuracies of various algorithms on the Washington dataset. 

Class RBF-SVM SAE DBN PPF-CNN CRNN HSGAN 3D-GAN CA-GAN 
1 94.1±3.1 92.7±1.8 94.2±2.7 97.9±0.6 92.2±0.1 92.8±3.1 96.1±0.1 99.9±0.1 
2 93.4±0.6 93.5±0.1 92.6±0.5 97.6±0.1 93.5±4.5 94.9±0.1 95.4±3.8 99.5±0.3 
3 98.3±0.1 92.7±0.5 91.5±0.8 100.0±0.0 86.6±0.1 95.8±0.3 99.6±0.0 100±0.0 
4 88.2±3.9 90.1±2.4 92.9±3.4 95.6±3.1 93.8±2.4 90.8±3.5 99.0±1.1 98.8±2.1 
5 95.6±0.4 99.0±0.6 98.9±1.1 99.9±0.1 96.9±0.3 90.0±0.0 99.5±0.3 99.9±0.1 
6 91.6±3.5 92.8±1.6 91.1±1.8 97.5±1.2 91.5±4.7 91.6±1.1 97.0±1.0 99.2±0.5 
7 98.2±1.5 93.2±0.5 93.5±0.3 94.9±0.1 99.3±0.3 94.7±1.3 98.2±0.7 99.6±0.1 

OA (%) 93.7±0.4 94.6±0.4 94.1±0.9 95.7±0.3 95.9±0.4 92.5±1.6 97.2±0.3 99.5±0.5 
AA (%) 92.3±0.8 94.2±0.6 94.6±1.0 95.9±0.5 94.7±0.1 90.8±1.8 97.0±0.5 98.9±0.7 

Kappa (%) 93.7±0.6 94.2±0.5 93.9±1.1 95.5±0.3 94.7±0.3 90.3±1.6 96.7±0.4 99.2±0.4 

Figure 9 shows the classification visualization of various algorithms on the Washington dataset. 
From Figure 9, we can see that DBN and CRNN misclassify the water and shadows classes. The 
proposed CA-GAN method achieves better classification performance for these two classes. For the 
roads class, all the RBF-SVM, SAE, DBN, CRNN, HSGAN, and 3D-GAN methods have different 
degrees of misclassification. In contrast to these methods, PPF-CNN and CA-GAN show better 
regional uniformity in the roads class. Compared with PPF-CNN, CA-GAN performs better regional 
uniformity in the roofs class. In addition, compared with other seven methods, CA-GAN shows better 
boundary integrity in the trees class. 
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Figure 9. Classification visualization on the Washington obtained by (a) RBF-SVM; (b) SAE; (c) DBN; 
(d) PPF-CNN; (e) CRNN; (f) HSGAN; (g) 3D-GAN; and (h) CA-GAN. 

4.4. Analysis on Running Time 

Tables 9–11 show the training and test time of various methods on three datasets. From Tables 
9–11, RBF-SVM and DBN consume less time than the other methods in the training procedure due to 
the 1D input. HSGAN, 3D-GAN, and CA-GAN require less training time to optimize the network 
than PPF-CNN and CRNN, and they take longer than the other methods. This is because GAN needs 
lots of time to optimize the generator and discriminator alternately. Compared with HSGAN and 3D-
GAN, CA-GAN spends longer time due to the increasing parameters of the attention module and 
convLSTM. Among all the methods, PPF-CNN and CRNN are the most time-consuming in terms of 
the training time. The computing time of PPF-CNN is mainly consumed in the augmentation of 
training samples, especially for numerous training samples. CRNN is time-consuming due to the 
recurrent neural network. In the testing procedure, PPF-CNN and CRNN cost more time because 
PPF-CNN adopts the voting strategy with the surrounding samples and CRNN adopts a complex 
recurrent network. CA-GAN takes similar time as 3D-GAN and convLSTM. It costs 0.3 s, 0.6 s, and 
0.3 s on three datasets, respectively. 
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Table 9. Running time of different methods on the Indian Pines dataset. 

Dataset Method Training Time (s) Test Time (s) 

Indian 
Pines 

RBF-SVM 0.4 ± 0.1 1.2 ± 0.1 
SAE 76.3 ± 8.4 0.2 ± 0.1 
DBN 114.3 ± 20.1 0.2 ± 0.1 

PPF-CNN 2056.0 ± 36.7 5.3 ± 0.3 
CRNN 2184.5 ± 75.7 49.9 ± 12.3 

HSGAN 444.7 ± 73.1 0.3 ± 0.0 
3D-GAN 597.67 ± 60.8 0.3 ± 0.0 
CA-GAN 712.9 ± 3.1 0.3 ± 0.1 

Table 10. Running time of different methods on the Pavia University dataset. 

Dataset Method Training Time (s) Test Time (s) 

Pavia 
University 

RBF-SVM 0.5 ± 0.1 1.4 ± 0.2 
SAE 12.9 ± 0.9 0.5 ± 0.0 
DBN 27.4 ± 0.9 0.5 ± 0.0 

PPF-CNN 2414.0 ± 374.0 19.8 ± 6.2 
CRNN 2717.6 ± 54.6 127.2 ± 4.3 

HSGAN 580.2 ± 20.5 0.5 ± 0.1 
3D-GAN 724.4 ± 50.7 0.6 ± 0.1 
CA-GAN 949.9 ± 80.2 0.6 ± 0.1 

Table 11. Running time of different methods on the Washington dataset. 

Dataset Method Training Time (s) Test Time (s) 

Washington 

RBF-SVM 0.3 ± 0.0 0.2 ± 0.0 
SAE 28.9 ± 0.4 0.2 ± 0.0 
DBN 29.2 ± 0.1 0.2 ± 0.0 

PPF-CNN 926.8 ± 29.5 5.2 ± 0.5 
CRNN 1328.1 ± 56.9 64.8 ± 12.3 

HSGAN 493.4 ± 73.8 0.2 ± 0.1 
3D-GAN 673.3 ± 23.7 0.3 ± 0.1 
CA-GAN 814.2 ± 7.2 0.3 ± 0.1 

4.5. Sensitivity to the Proportion of Training Samples 

To investigate the classification accuracies with different percentages of training samples, we 
change the percentage of training samples for each class from 1% to 9% at 2% intervals on the Indian 
Pines dataset. Similarly, the percentage of training samples for each class ranges from 1% to 5% at a 
1% interval on the Pavia University and Washington datasets. Figure 10 shows the OAs of all the 
comparison algorithms with various percentages of training samples. 

 
(a) 
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Figure 10. OA results of various methods with different percentages of training samples on the (a) 
Indian Pines Dataset, (b) Pavia University Dataset, and (c) Washington Dataset. 

From Figure 10, the classification accuracy of the eight methods goes up quickly with the 
increase of the percentage of training samples. When the training samples are large enough, the 
classification accuracy of all the comparison methods changes slowly and tends to be stable. 3D-GAN 
and CA-GAN outperform RBF-SVM, SAE, DBN, CRNN, PPF-CNN, and HSGAN in three datasets 
with different percentages of training samples. Compared with PPF-CNN, HSGAN, and 3D-GAN, 
CA-GAN consistently provide excellent classification performance with different percentages. When 
the proportion of training samples is only 1%, CA-GAN increases by at least 6.1%, 5.6%, and 5.5% on 
three datasets, respectively. Thus, CA-GAN is suitable for the limited number of training samples. 

4.6. Influence of different number of principle components in CA-GAN 

To verify the effectiveness of the proposed method with different numbers of principal 
components, we change the number of principal components in PCA. Tables 12–14 record the 
classification results and training time of the proposed method under various numbers of PCA 
components and the proposed method without PCA-based pre-processing. 

As shown in Tables 12–14, the classification accuracy of CA-GAN on the three datasets increases 
firstly and then decreases with the increasing dimensionality of PCA. Compared with CA-GAN with 
PCA-20, CA-GAN with PCA-50 improves by 0.2%, 0.2%, and 0.3% on the three datasets, respectively. 
Although the classification accuracy is improved to some extent, more principal components lead to 
higher computational complexity and a longer training time. The training time of CA-GAN with 
PCA-50 is much longer than that of CA-GAN with PCA-20. When the principal components of PCA 
are further increased, the classification performance deteriorates slightly. 
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Table 12. The classification results of CA-GAN with different principal components of principal 
component analysis (PCA) on the Indian Pines dataset. 

Dataset CA-GAN Method OA(%) Training Time (s) 

Indian Pines 

PCA-20 97.4 ± 0.5 712.9 ± 3.1 
PCA-50 97.6 ± 0.3 1296.8 ± 59.8 
PCA-100 97.4 ± 0.3 2183.2 ± 101.7 
PCA-150 97.3 ± 0.2 3924.7 ± 241.5 

without PCA 97.1 ± 0.5 6396.8 ± 148.3 

Table 13. The classification results of CA-GAN with different principal components of PCA on the 
Pavia University dataset. 

Dataset CA-GAN Method OA(%) Training Time (s) 

Pavia University 

PCA-20 99.2 ± 0.6 949.9 ± 80.2 
PCA-40 99.4 ± 0.4 1457.1 ± 83.4 
PCA-60 99.3 ± 0.4 2676.8 ± 129.8 
PCA-80 99.1 ± 0.3 4713.4 ± 185.3 

without PCA 99.0 ± 0.5 8034.8 ± 192.1 

Table 14. The classification results of CA-GAN with different principal components of PCA on the 
Washington dataset. 

Dataset CA-GAN Method OA(%) Training Time (s) 

Washington 

PCA-20 99.5 ± 0.5 814.2 ± 7.2 
PCA-50 99.8 ± 0.2 1389.4 ± 36.8 
PCA-100 99.5 ± 0.3 2435.4 ± 74.1 
PCA-150 99.4 ± 0.2 4382.1 ± 183.5 

without PCA 99.2 ± 0.4 7274.1 ± 278.4 

4.7. Effectiveness of Each Step in CA-GAN 

Table 15 records the results of verifying the validity of each step in the CA-GAN method. The 
comparison methods include CA-GAN without ConvLSTM (CA-GAN-WC), CA-GAN without 
ConvLSTM and attention module (CA-GAN-WCA), and CA-GAN without ConvLSTM, attention 
module and collaborative learning (CA-GAN-WCAC). As shown in Table 15, compared with CA-
GAN-WCAC, CA-GAN-WCA increases by 2.0%, 1.4%, and 1.5% in the OA index on three datasets. 
It shows that collaborative learning can effectively improve the classification performance. Compared 
with CA-GAN-WCA, CA-GAN-WC improves by 1.0%, 1.3%, and 1.3% in the OA index on three 
datasets. It indicates adding the joint spatial–spectral hard attention module can facilitate the 
classification performance by improving the quality of generated samples. Compared with CA-GAN-
WC, CA-GAN uses ConvLSTM to promote the classification performance by extracting joint spatial–
spectral features of HSIs. Compared with CA-GAN-WC, CA-GAN-WCA, and CA-GAN-WCAC, CA-
GAN shows the best classification results in the AA, OA, and Kappa on three datasets. 
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Table 15. Effect of each step in CA-GAN on three datasets. CA-GAN-WC: CA-GAN without 
ConvLSTM, CA-GAN-WCA: CA-GAN without ConvLSTM and attention module, and CA-GAN-

WCAC: CA-GAN without ConvLSTM, attention module and collaborative learning. 

Dataset Method CA-GAN-WCAC CA-GAN-WCA CA-GAN-WC CA-GAN 

Indian Pines 
OA(%) 94.0 ± 0.1 96.0 ± 0.3 97.0 ± 0.1 97.4 ± 0.5 
AA(%) 89.9 ± 1.6 94.2 ± 0.5 94.7 ± 0.8 95.2 ± 2.2 

Kappa(%) 92.3 ± 2.0 96.0 ± 0.1 96.6 ± 0.2 97.0 ± 0.6 

Pavia University 
OA(%) 96.0 ± 0.1 97.4 ± 0.5 98.7 ± 0.4 99.2 ± 0.6 
AA(%) 95.9 ± 0.2 97.1 ± 0.1 98.0 ± 0.3 98.6 ± 1.2 

Kappa(%) 96.0 ± 0.4 97.3 ± 1.0 98.5 ± 0.2 99.2 ± 0.7 

Washington 
OA(%) 96.3 ± 0.1 97.8 ± 0.3 99.1 ± 0.4 99.5 ± 0.5 
AA(%) 96.1 ± 0.2 97.5 ± 0.6 98.3 ± 0.1 98.9 ± 0.7 

Kappa(%) 96.3 ± 0.1 97.6 ± 0.1 98.8 ± 0.4 99.2 ± 0.4 

5. Conclusions 

In this paper, a novel CA-GAN method has been designed to solve the small sample problem in 
HSI classification. In the generator, a joint spatial–spectral hard attention module is devised to 
discard misleading and confounding features of the generated samples and impel the distribution of 
generated samples to approximate the distribution of real HSIs. In the discriminator, a convolutional 
LSTM layer is merged in the discriminator to extract joint spatial–spectral information of HSIs. 
Additionally, a collaborative learning mechanism is designed to assist the sample generation in the 
generator by using the real sample information extracted by the discriminator. It enables the 
generator and discriminator to be optimized alternately not only through the competition but also in 
a collaborative manner. These designs enable CA-GAN to improve the classification performance of 
HSIs with limited training samples by using the high-quality generated samples. The experiment 
results invalidated that CA-GAN can obtain greater HSI classification results compared with other 
advanced methods. In the future, we will investigate how to determine the positions and numbers of 
various modules in CA-GAN more effectively and automatically. In addition, we will try other types 
of sampling strategies to reduce the overlap between the training and testing sets of HSIs. 
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