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Abstract—The extraction of joint spatial–spectral features has
been proved to improve the classification performance of hyper-
spectral images (HSIs). Recently, utilizing convolutional neural
networks (CNNs) to learn joint spatial–spectral features has be-
come of great interest. However, the existing CNN models ignore
complementary spatial–spectral information among the shallow
and deep layers. Moreover, insufficient training samples in HSIs
afflict these CNN models with overfitting problem. In order to ad-
dress these problems, a novel CNN method for HSI classification
is proposed. It considers multilayer spatial–spectral feature fu-
sion and sample augmentation with local and nonlocal constraints,
which is abbreviated as MSLN-CNN. In MSLN-CNN, a triple-
architecture CNN is constructed to extract spatial–spectral fea-
tures by cascading spectral features to dual-scale spatial features
from shallow to deep layers. Then, multilayer spatial–spectral fea-
tures are fused to learn complementary information among the
shallow layers with detailed information and the deep layers with
semantic information. Finally, the multilayer spatial–spectral fea-
ture fusion and classification are integrated into a unified network,
and MSLN-CNN can be optimized in the end-to-end way. To alle-
viate the small sample size problem, the unlabeled samples having
high confidences on local spatial constraint and nonlocal spectral
constraint are selected and prelabeled. The nonlocal spectral con-
straint considers the structure information with spectrally simi-
lar samples in the nonlocal searching, while the local spatial con-
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straint utilizes the contextual information with spatially adjacent
samples. Experimental results on several hyperspectral datasets
demonstrate that the proposed method achieves more encouraging
classification performance than the current state-of-the-art classi-
fication methods, especially with the limited training samples.

Index Terms—Convolutional neural networks (CNNs), hyper-
spectral image (HSI) classification, multilayer feature fusion, non-
local information, spatial–spectral feature extraction.

I. INTRODUCTION

HYPERSPECTRAL remote sensing has played an impor-
tant role in the field of remote sensing technologies.

The imaging spectrometer of hyperspectral remote sensing ob-
tains hundreds of continuous and narrow spectral bands in the
range of ultraviolet, visible light, near-infrared, and mid-infrared
spectrum [1]. It can reach nanometer-scale spectral resolution.
Hyperspectral images (HSIs) record spectral and spatial infor-
mation of ground objects, which can be viewed as data cubes.
In a data cube, each spectral band corresponds to an image with
a particular wavelength. Compared with other types of remote
sensing images, HSIs provide the potential for more accurate and
detailed distinction of different materials and objects. Therefore,
HSIs have been applied in various fields, such as military [2],
astronomy [3], [4], agriculture [5], and mineralogy [6].

Classification of HSIs is a common technique in different ap-
plications. This technique involves two crucial issues: effective
feature extraction and advanced classifier design. The traditional
feature extraction methods reduce the dimensionality by lin-
early or nonlinearly transforming the original high-dimensional
data into a new low-dimensional space [7]. Linear transforma-
tion methods include principal component analysis (PCA) [8],
independent component analysis [9], linear discriminant analy-
sis [10], and local Fisher’s discriminant analysis (LFDA) [11].
Different atmospheric scattering conditions and intraclass vari-
ability make HSIs inherently non-linear [12]. Manifold learning
can be used to address the nonlinear problem by seeking the
intrinsic manifold structure. Manifold learning-based dimen-
sionality reduction methods can be achieved by constructing a
nonlinear mapping to observe certain properties of the mani-
fold. Many manifold learning-based methods, such as isometric
feature mapping [13] and local linear embedding [14], have

1939-1404 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8032-7542
https://orcid.org/0000-0003-0997-4664
https://orcid.org/0000-0003-0379-2042
mailto:jiefeng0109@163.com
mailto:jiantongchen1123@163.com
mailto:liguoliu0619@163.com
mailto:xianghaicao@hotmail.com
mailto:xrzhang@mail.xidian.edu.cn
mailto:lchjiao@mail.xidian.edu.cn
mailto:lchjiao@mail.xidian.edu.cn
mailto:yutao@opt.ac.cn


1300 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 12, NO. 4, APRIL 2019

been applied for HSIs. Another type of nonlinear methods focus
on projecting the data from the original space into the kernel-
induced space, such as KPCA [15] and KLFDA [16]. To deal
with spatial variability of spectral signature, some methods try
to incorporate spatial information into consideration. A series of
spatial–spectral feature extraction methods were proposed, such
as three-dimensional (3-D) Gabor filters [17] and 3-D morpho-
logical profile [18].

The features obtained by the feature extraction methods are
fed into the classifiers. The representative classifiers include
k-nearest neighbors [19], logistic regression [20], support vec-
tor machine (SVM) [21], sparse representation-based classifi-
cation [22], and extreme learning machine [23]. Among these
classifiers, SVM seeks to separate the samples with different
classes by learning an optimal decision hyperplane. It has shown
promising success in HSI classification due to its outstanding
ability in dealing with high-dimensional feature space with small
sample size.

The above-mentioned feature extraction methods adopt a se-
ries of handcrafted features, which highly rely on the experience
and parameter setting of massive experts. In the last decade,
deep learning methods have been a hot topic. Deep neural net-
works allow computational models of multiple processing layers
to learn data representations with multiple levels of abstraction
[24]. Different from traditional feature extraction methods, deep
architecture extracts abstract and hierarchical features for clas-
sification automatically.

Recently, some deep learning methods have been proposed
for HSI classification. Compared with other traditional methods,
deep learning method achieves more promising performance for
HSI classification. The representative deep learning models in-
clude stacked autoencoders (SAEs) [25], [26], deep belief net-
works (DBNs) [27], and convolutional neural networks (CNNs)
[28]–[33]. In [25], a joint spatial–spectral SAE (JSSSAE) net-
work was proposed for HSI classification. JSSSAE uses PCA
to compress the original image. Then, it extracts spatial fea-
tures from the compressed image. Then, the spatial features are
flattened to a 1-D vector and cascaded with original spectral
features. In [26], a DBN-based HSI classification method was
proposed by learning the restricted Boltzmann machine network
layer by layer. DBN utilizes a similar neighboring structure with
JSSSAE to extract spatial features. JSSSAE and DBN adopt the
full connection of different layers, which needs to train a large
number of parameters. Moreover, these methods cannot make
full use of spatial information. This is because it flattens the spa-
tial information into a vector before the training stage. Compared
with SAE and DBN, CNN extracts the spatial information by
using local connections to the original data and shared weights
to reduce the number of parameters. In [28], Hu et al. proposed
a 1-D CNN-based method to learn hierarchical spectral features
of HSIs.

Recently, some joint spatial–spectral CNN methods were
proposed to improve the classification performance of HSIs
[29]–[33]. In [29], a contextual CNN (CCNN) method was
proposed. It uses a multiscale filter bank in the first convolu-
tional layer to extract spatial and spectral features. Then, joint
spatial–spectral features are obtained by concatenating the ex-

tracted spatial and spectral features. In [30] and [32], a dual-
channel CNN (DCCNN) method was proposed. It utilizes a
1-D CNN to extract spectral features and a 2-D CNN to extract
spatial features, and concatenates them together into a softmax
regression classifier. However, a CCNN only extracts spatial–
spectral features in the shallow layer, while a DCCNN extracts
in the deep layer. In [31], a 3-D CNN (3-DCNN) method was
proposed to extract spatial–spectral features by using a 3-D con-
volution operation. A 3-DCNN extracts spatial–spectral features
of different layers, but it ignores complementary information
among different layers. Moreover, a 3-DCNN has numerous
parameters caused by the 3-D convolution operation, which
aggravates the overfitting problem. These above-mentioned
spatial–spectral CNN methods achieve promising performance
in HSI classification when sufficient training samples are pro-
vided. For the small sample size problem of CNNs in HSIs, a
CNN method based on deep pixel-pair features (PPF-CNN) was
proposed [34]. A PPF-CNN constructs an expanded sample set
by pairing with any two selected samples from available training
samples. A PPF-CNN just reorganizes and relabels the existing
training samples.

Some methods combining CNN and recurrent neural network
(RNN) [35]–[39] have been developed for HSI classification.
Most of these methods use RNN to extract spectral sequence
information and CNN to extract spatial information. Compared
to 1DCNN, RNN model is able to extract global spectral in-
formation. In [39], spatial and spectral features were extracted
by replacing the full connection in the long short-term memory
model with the convolution operation simultaneously.

In this paper, a novel CNN method based on multilayer
spatial–spectral feature fusion and sample augmentation with
local and nonlocal constraints (MSLN-CNN) is proposed for
HSI classification. In MSLN-CNN, a triple-architecture CNN is
constructed, where two architectures are devised to extract spa-
tial features with two different scales and the other is devised to
extract spectral features. The joint spatial–spectral features are
extracted by cascading spectral features to dual-scale spatial fea-
tures from shallow to deep layers. The shallow layers focus on
detailed and boundary information, while the deep layers learn
high-level abstract and semantic information. The multilayer
spatial–spectral features are fused to provide complementary
information among different hierarchical layers.

These fused spatial–spectral features contain two different
scales because of the usage of dual-scale spatial features. Then,
these features with different scales are fed into two softmax
layers. MSLN-CNN achieves an end-to-end classification by
forcing multilayer spatial–spectral feature fusion and softmax-
based classification into a unified loss function. Finally, the class
label of samples is predicted by the multidecision from the out-
puts of two softmax layers. To alleviate the small sample size
problem, the local spatial constraint and nonlocal spectral con-
straint are designed to select and prelabel the unlabeled samples
with high confidences. These prelabeled samples are used to
augment the training set. In the spatial constraint, local contex-
tual information is used to select the spatially adjacent samples.
In the spectral constraint, patch-to-patch similarity is used to
select the spectrally similar samples in the nonlocal searching.
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The main contributions of this paper can be summarized as
follows.

1) To make full use of complementary spatial–spectral in-
formation among different layers, MSLN-CNN devises
multilayer spatial–spectral feature fusion. It can merge
the detailed and boundary information of shallow layers
and semantic information of deep layers.

2) MSLN-CNN combines multilayer spatial–spectral feature
fusion and softmax-based classification into a unified op-
timization procedure, which can extract complementary
spatial–spectral features and implement the classification
simultaneously.

3) MSLN-CNN uses not only the local contextual infor-
mation, but also the structural information in the non-
local searching to alleviate the small sample size problem
of HSIs. In MSLN-CNN, the expanded samples contain
new information by introducing extra unlabeled samples.
Compared with the original training set, the expanded
sample set obtained by MSLN-CNN has higher diversity
than that obtained by PPF-CNN.

The rest of this paper is organized as follows. Section II is
a detailed description of the proposed MSLN-CNN method,
including sample augmentation with nonlocal spectral con-
straint and local spatial constraint, multilayer spatial–spectral
feature fusion, and softmax-based multidecision classification.
In Section III, we show the experimental results and analysis
on benchmark hyperspectral datasets. Finally, some concluding
remarks and suggestions are provided for the further work in
Section IV.

II. PROPOSED MSLN-CNN METHOD

Compared with other deep learning models, CNN has two
special structures: local connection and weight sharing. When
faced with computer vision problems, CNN can provide better
generalization ability with such special structures. The archi-
tecture of CNN is based on the inspirations from neuroscience.
A traditional CNN is constructed by stacking several convolu-
tional layers, pooling layers, and full connection layers to form
deep architecture. In order to solve HSI classification, a novel
MSLN-CNN method is proposed.

The flowchart of the proposed MSLN-CNN method is shown
in Fig. 1. As shown in Fig. 1, MSLN-CNN mainly consists of
three stages: sample augmentation with nonlocal spectral con-
straint and local spatial constraint; multilayer spatial–spectral
feature fusion; and softmax-based multidecision classification.
At the sample augmentation stage, the nonlocal spectral con-
straint considers the structure information with patch-to-patch
spectral similarity in the nonlocal searching, while the local
spatial constraint considers the contextual information with
spatially adjacent samples. At the stage of multilayer spatial–
spectral feature fusion, a triple-architecture CNN is devised,
where two architectures are devised to extract various spatial
features with dual-scale convolution kernels and the other is
devised to extract spectral features with 1 × 1 convolution ker-
nels. Then, multilayer spatial–spectral features are extracted

by cascading spectral features to dual-scale spatial features
in all the convolutional layers. To make full use of com-
plementary spatial–spectral information among different lay-
ers, multilayer spatial–spectral features are fused. At the stage
of softmax-based multidecision classification, complementary
spatial–spectral features with different scales are separately fed
into the last softmax layer. MSLN-CNN is jointly optimized
by combining complementary spatial–spectral feature learning
and classification into a unified loss function. Finally, the class
labels of samples are predicted by the multidecision from these
two softmax layers.

A. Sample Augmentation Based on Local Spatial Constraint
and Nonlocal Spectral Constraint

To alleviate the lack of training samples, a novel sample aug-
mentation method based on local spatial constraint and nonlocal
spectral constraint is proposed. In HSIs, the samples in a local
spatial region generally share similar spectral characteristics, so
these samples may have the same label with high probability.
Since the samples belonging to the same class may be located in
different regions, nonlocal information [40] is also vital for HSI
classification. Considering the structural information of current
samples, the pixel-to-pixel similarity is extended to patch-to-
patch similarity.

1) Local Spatial Constraint: In HSIs, the training sam-
ples are represented by , where m is the number of training
samples. The class labels of training samples are denoted as
{y1 , y2 , . . . , ym}. The unlabeled samples are represented by
{xu

1 , xu
2 , . . . , xu

n}, where n is the number of unlabeled samples.
The coordinate positions of xl

i{xl
1 , x

l
2 , . . . , x

l
m} and xμ

j are in-
dicated as (αl

i , β
l
i ) and (αμ

j , βμ
j ), respectively.

For an unlabeled sample xμ
j , N spa

j represents the set of neigh-
boring samples falling into a window around xμ

j . P spa
k (xμ

j )
indicates k spatial nearest training samples of xμ

j . πspa
j is

defined as the intersection of N spa
j and P spa

k (xμ
j ), namely

πspa
j = P spa

k (xμ
j ) ∩ N spa

j . If the set πspa
j exists, the statistical

distribution of the class labels of samples in πspa
j is calculated.

The class with the most training samples is represented as yspa
j .

If the number of these training samples belonging to the class
yspa

j is larger than (k − 1)/2, the unlabeled sample xμ
j is prela-

beled as yspa
j in the local spatial constraint. On the contrary, if

the above condition is not satisfied, this unlabeled sample xμ
j is

prelabeled as 0.
The local spatial constraint is formulated as follows:

Yspa
(
xμ

j

)
=

{
yspa

j , if num
(
yspa

j

)
> (k − 1) /2

0, otherwise
(1)

yspa
j =

{
arg max

c

∑
xl

i ∈π s p a
j

I (yi = c), if πspa
j �= ∅

0, otherwise

(2)

where num(yspa
j ) represents the number of training samples in

πspa
j belonging to the class label yspa

j , and c = 1, 2, . . . , z. z rep-
resents the number of class labels. I(·) is the indictor function.
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Fig. 1. Flowchart of the proposed MSLN-CNN.

Its value will be one if the condition in the bracket is satisfied,
otherwise it will be zero. The spatial similarity Sspa(x

μ
j , xl

i)
is measured by negative Euclidean distance between the un-
labeled sample xμ

j and any training sample xl
i in πspa

j , and
Sspa(x

μ
j , xl

i) = −‖(αl
i , β

l
i ) − (αμ

j , βμ
j )‖.

2) Nonlocal Spectral Constraint: In the nonlocal spectral
constraint, N spe

j represents the sets of neighboring samples
falling into a nonlocal search window centered at the unlabeled
sample xμ

j . P spe
k (xμ

j ) indicates the set of k spectral nearest train-
ing samples of xμ

j . πspe
j is defined as the intersection of N spe

j

and P spe
k (xμ

j ), namely πspe
j = P spe

k (xμ
j ) ∩ N spe

j . Similar to the
local spatial constraint, the class distribution is calculated. The
class containing the most training samples is recorded as yspe

j .
If the number of these training samples belonging to yspe

j is
larger than (k − 1)/2, the unlabeled sample xμ

j is selected and
prelabeled as yspe

j . On the contrary, the unlabeled sample xμ
j is

prelabeled as 0.

The nonlocal spectral constraint is formulated as follows:

Yspe
(
xμ

j

)
=

{
yspe

j , if num
(
yspe

j

)
> (k − 1) /2

0, otherwise
(3)

yspe
j =

{
arg max

c

∑
xl

i ∈π s p e
j

I (yi = c), if πspe
j �= ∅

0, otherwise

(4)

where the spectral similarity is measured by patch-to-patch sim-
ilarity Sspe(x

μ
j , xl

i). It is calculated as follows:

Sspe
(
xμ

j , xl
i

)
= −‖Pi − Pj‖2

2,G (5)

where the patches Pi and Pj represent the square neighbors
around the samples xl

i and xμ
j , respectively, and G is the standard

Gaussian kernel function.
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Fig. 2. Detailed architecture of MSLN-CNN.

3) Sample Augment Based on Both Local Spatial Constraint
and Nonlocal Spectral Constraint: After the above two con-
straints, only the unlabeled samples having the same nonzero
label in both local spatial constraint and nonlocal spectral con-
straint are selected. Other unlabeled samples are discarded. The
selected unlabeled samples are labeled as Yspa(x

μ
j ) or Yspe(x

μ
j ),

which is calculated as

Y
(
xμ

j

)

=

{
Yspa

(
xμ

j

)
or Yspe

(
xμ

j

)
, if Yspa

(
xμ

j

)
= Yspe

(
xμ

j

) �= 0
none, otherwise.

(6)

B. CNN Based on Multilayer Spatial–Spectral Feature Fusion

HSIs are 3-D data cube, which has spatial and spectral in-
formation simultaneously. In HSIs, the spectral signatures of
samples belonging to the same class may be different due
to varied imaging conditions, e.g., changes in illumination,
environment, atmospheric, and temporal conditions. There-
fore, joint spatial–spectral feature extraction is critical for HSI
classification.

The detailed architecture of MSLN-CNN is shown in Fig. 2.
In MSLN-CNN, a triple-architecture CNN is constructed. In
the middle architecture, the spatial features are extracted with
1 × 1 convolution kernels. To extract the spectral information
sufficiently, the input of this architecture is spatial windows
with all the spectral bands. 1 × 1 convolutional layers and cor-
responding max-pooling layers are stacked layer-by-layer. A
1 × 1 convolutional filter is proposed in network in network
[41], which allows complex and learnable interactions of cross-
channel information.

For the other two architectures, various spatial features are
extracted with dual-scale convolution kernels. The input of dual-
scale architectures is spatial windows with several principle

components (PCs) by using PCA-based dimensionality reduc-
tion. In dual-scale architectures, 3 × 3 and 5 × 5 convolutional
layers and corresponding max-pooling layers are stacked layer-
by-layer. Finally, extracted spatial features are flattened to a
1-D vector, which is used as the input of next fully connected
layer. In [42], Li et al. extracted the multiscale features of HSIs
by Gaussian pyramid decomposition. Compared with the liter-
ature [42], dual-scale convolution kernels in MSLN-CNN show
outstanding performance on local feature extraction.

Max-pooling layer with a size of 2 × 2 is used after each
convolutional layer. The step of max-pooling layers is 2. The
rectified linear unit is used as nonlinear activation function for
all the convolutional layers. To improve the stability of MSLN-
CNN, batch normalization strategy [43] is used for all the con-
volutional layers. In order to alleviate the overfitting, dropout
strategy [44] is adopted for some hidden layers.

In MSLN-CNN, multilayer spatial–spectral features with dif-
ferent scales are obtained by cascading the spectral features and
dual-scale spatial features in all the convolutional layers. Mul-
tilayer spatial–spectral features are fused by cascading the fea-
tures of different layers from shallow to deep, which provides
complementary information for classification. To achieve mul-
tilayer spatial–spectral feature fusion, the max-pooling layers
with sizes of 2 × 2, 4 × 4, 8 × 8, and 16 × 16 are used to en-
sure the same size of multilayer spatial–spectral features before
feature fusion. Then the outputs of these layers are flattened
to the 1-D vector and cascaded to achieve multilayer spatial–
spectral feature fusion.

In [45], a hypercolumn CNN (HCCNN) is proposed. In HC-
CNN, deep and shallow layers are combined by summing the
features from different layers. Compared with HCCNN, MSLN-
CNN uses cascade operation to preserve the original information
of extracted features. Compared with CNN-RNN-based meth-
ods [35]–[39], the proposed method considers the fusion of joint
spatial–spectral features from shallow to deep layers.
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C. MSLN-CNN-Based Classification

These features with different scales are fed into two softmax
layers, respectively. The outputs of the softmax layers represent
the class probability distribution obtained from features of dif-
ferent scales. A loss function is defined by combining the outputs
of two softmax layers. MSLN-CNN is optimized by minimizing
the loss function in an end-to-end manner. In the test stage, the
class labels of samples are predicted by multidecision from the
outputs of these two softmax layers.

In MSLN-CNN, softmax is used for multiclass classification.
The output of the softmax function can be used to represent the
probability distribution of all the classes, where each entry is in
the range of (0, 1], and all the entries add up to 1.

To integrate complementary spatial–spectral feature learning
and classifier training into a unified optimization procedure, a
new loss function is constructed. The loss function is determined
by the cross entropy of the real class probability and the output
class probability of MSLN-CNN. The output class probability is
calculated by averaging the outputs obtained by different scales
of complementary spatial–spectral features. The loss function
is defined as

J (θ) = − 1
m

m∑

i=1

z∑

c=1

I {c = yi} log
[(

pc

(
xl

i

)
+qc

(
xl

i

))
/2

]

(7)
where pc(xl

i) and qc(xl
i) are the probabilities of assigning the

ith sample with different scales of complementary features to
the cth class, respectively.

At the test stage, the classification results are decided by
the class probability distributions obtained from these different
scales of features. The labels {ytest

1 , ytest
2 , . . . , ytest

s } of testing
samples {xtest

1 , xtest
2 , . . . , xtest

s } are predicted by the following
equation:

ytest
t = arg max

c

[(
pc

(
xtest

t

)
+ qc

(
xtest

t

))
/2

]
, t = 1, 2, . . . , s.

(8)
The detailed procedure of MSLN-CNN can be summarized

in Algorithm I.

III. EXPERIMENTAL RESULTS

In this section, we validate the performance of the proposed
MSLN-CNN method on three benchmark hyperspectral datasets
and compare with some state-of-the-art HSI classification
approaches.

A. Data Description

Experiments are conducted on the hyperspectral datasets of
the Indian Pines, Pavia University, and Salinas. The detailed
descriptions of these datasets are listed as follows.

1) The Indian Pines dataset was collected by the airborne
visible/infrared imaging spectrometer sensor (AVIRIS)
over the Indian Pines test site in June 1992. It consists of
145 × 145 pixels and has 220 spectral bands. The dataset
has 20 m per pixel spatial resolutions and 10 nm spectral
resolutions covering a spectrum range of 200–2400 nm. In

Algorithm 1: The Procedure of the Proposed MSLN-CNN
Method.
1. INPUT: The training set {xl

1 , x
l
2 , . . . , x

l
m} and test set

{xtest
1 , xtest

2 , . . . , xtest
s } from z classes, the class labels

of training samples {y1 , y2 , . . . , ym}, minibatch size,
the number of training epochs, the number of PCs r
and the size of spatial windows p

2. Begin
3. Prelabel the unlabeled samples with local spatial

constraint and nonlocal spectral constraint by (6)
4. Select the prelabeled samples to add in training set as

{xl
1 , . . . , x

l
m , xu

g , . . . , xu
h}, the corresponding class

labels are updated as {y1 , . . . , ym , Y (xμ
g ), . . . , Y (xμ

h )}
5. Apply PCA to the HSI and reserve the first r PCs
6. Initialize: The weights and biases are randomly

initialized. They obey to the Gaussian distribution with
mean 0 and standard deviation 0.1.

7. Input the spatial windows with all the spectral bands
and with r PCs into the triple architectures of
MSLN-CNN.

8. for every epoch
9. for training sample of every minibatch

10. compute the unified loss function (7)
11. update the parameters of MSLN-CNN by

minimizing (7)
12. end for
13. end for
14. Calculate the labels of test set {xtest

1 , xtest
2 , . . . , xtest

s }
by (8)

15. END
16. OUTPUT: the labels of the test samples classified by

the trained MSLN-CNN

the experiment, 200 spectral bands were used by removing
the absorption bands [100–104], [150–163], and 220. The
ground truth is composed of 16 vegetation classes. The
false-color composite image (bands 50, 27, 17) is shown
in Fig. 3(a).

2) The Pavia University dataset was collected by the re-
flection optical system imaging spectrometer during a
flight campaign over Pavia, Northern Italy. It consists of
610 × 340 pixels, and has a spatial resolution of 1.3 m per
pixel. Removing 12 noise bands, 103 bands are retained
in the experiments. The image contains nine classes. The
false-color composite image (bands 53, 31, 8) is shown in
Fig. 3(b).

3) The Salinas dataset was collected by the 224-band AVIRIS
sensor over Salinas Valley, California. In this experiment,
204 bands are retained after removing 20 water absorp-
tion bands: [108–112], [154–167], and 224. The dataset
consists of 512 × 217 pixels, and has a spatial resolution
of 3.7 m per pixel. The ground truth contains 16 classes.
Fig. 3(c) shows a false-color composite image (bands 50,
170, 190).
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Fig. 3. False-color composite images. (a) Indian Pines. (b) Pavia University.
(c) Salinas.

B. Experimental Setting

In order to verify the classification performance of the pro-
posed MSLN-CNN method, five representative methods based
on deep learning for HSI classification, JSSSAE [25], DBN
[27], CNN [28], PPF-CNN [34], and 3-DCNN [31] are used
as the comparison methods. In addition, the classical SVM
with radial basis function (RBF-SVM) [21] is also used as a
comparison method. The classification performance of all these
methods is measured by three popular indexes: overall accuracy
(OA), average accuracy (AA), and Kappa coefficient (Kappa).
All the experimental results are obtained by running 30 times
independently with a random division for training and test sets.
All the experiments are implemented using Python language
and tensorflow library [46]. TensorFlow is an open source soft-
ware library for numerical computation using data flow graphs.
A NVIDIA 1080Ti graphics card is used to implement GPU
computation.

For RBF-SVM, one-against-all strategy is used to deal with
multiclass classification tasks. In RBF-SVM, the penalty and
gamma parameters are determined by fivefold cross validation.
For JSSSAE and DBN, the radius of spatial neighborhood win-
dow is searched in the range of [3, 21]with the interval of 2. For
CNN, as suggested by the literature [28], the input of the spatail
window is set as 5 × 5. For PPF-CNN, the size of the block
window of neighboring pixels is set to the default value in [34].
For 3-DCNN, the spatial window size of 3-D input is resized
to 27 × 27 [31]. For MSLN-CNN, the spatial window size of
the input is 27 × 27. Suggested by Qian and Ye [47], a 5 × 5
patch is chosen in nonlocal spectral constraint of MSLN-CNN.
The MSLN-CNN network uses a minibatch gradient descent to
guide the training process. In the training process of MSLN-
CNN, the batch size is 128, the learning rate is 0.01, and the
number of iterations is 1000.

TABLE I
16 CLASSES OF THE INDIAN PINES IMAGE AND THE NUMBERS

OF TRAINING AND TEST SAMPLES FOR EACH CLASS

C. Classification Results of Hyperspectral Datasets

1) Classification Results of the Indian Pines Dataset: In the
Indian Pines dataset, 5% samples from each class are randomly
selected as the training set. The unlabeled samples with the same
number as the training samples are selected from prelabeled
unlabeled samples. The remaining samples are used for test.
The numbers of training and test samples are shown in Table I.

Table II records the average classification accuracies and the
corresponding standard deviations of the seven algorithms over
30 independent runs. In Table II, the first 16 rows correspond
to the results of each class, and the last three rows are the re-
sults of OA, AA, and Kappa for all the classes. In the seven
algorithms, the best classification results are highlighted in gray
regions. As shown in Table II, deep learning-based methods,
JSSSAE, DBN, CNN, PPF-CNN, 3-DCNN, and MSLN-CNN
are superior to RBF-SVM due to the ability of hierarchical non-
linear feature extraction. Compared with JSSSAE, DBN, and
CNN, PPF-CNN achieves better classification results because
of its enlargement of available training samples. Compared with
PPF-CNN, 3-DCNN improves the classification performance
by combining spatial and spectral features. Among the seven
methods, MSLN-CNN achieves the best classification results
in most classes because of effective sample augmentation and
multilayer spatial–spectral feature fusion. It is worth noting that
MSLN-CNN achieves completely correct classification for both
Hay-windrowed and Woods classes. In addition, compared with
other methods, MSLN-CNN improves at least 5.4% in the OA
index, 5% in the AA index and 6% in the Kappa index.

Fig. 4 shows the classification visual maps of the seven algo-
rithms on the Indian Pines dataset. As shown in Fig. 4(b)–(f),
RBF-SVM, JSSSAE, DBN, CNN, and PPF-CNN misclassify
many samples in the middle of regions, especially in the corn-
notill, corn-mintill, soybean-notill, and soybean-mintill classes.
To some extent, the misclassification leads to some visual noisy
scattered points. Compared with these methods, 3-DCNN and
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TABLE II
CLASSIFICATION RESULTS OF RBF-SVM, JSSAE, DBN, CNN, PPF-CNN, 3-DCNN, AND MSLN-CNN ON THE INDIAN PINES DATASET

Fig. 4. (a) Ground truth and (b)–(h) classification visual maps of the Indian
Pines dataset by RBF-SVM, JSSAE, DBN, PPF-CNN, CNN, 3-DCNN, and
MSLN-CNN, respectively.

MSLN-CNN significantly improve the uniformity of regions.
Compared with 3-DCNN, MSLN-CNN achieves better regional
homogeneity in the soybean-clean and grass-trees classes, and
better boundary localization in the Corn-notill class.

2) Classification Results of the Pavia University Dataset: In
the Pavia University dataset, 3% samples from each class are
randomly selected for training. The unlabeled samples with the
same number as the training samples are selected for sample
augmentation. The remaining samples are selected for test. The

TABLE III
NINE CLASSES OF THE PAVIA UNIVERSITY IMAGE AND THE NUMBERS

OF TRAINING AND TEST SAMPLES FOR EACH CLASS

numbers of training and test samples for each class are given in
Table III.

The results of statistical classification on the Pavia Univer-
sity dataset are summarized in Table IV. As shown in Table IV,
CNN, PPF-CNN, 3-DCNN, and MSLN-CNN are superior to
RBF-SVM, JSSSAE, and DBN by extracting spatial informa-
tion with local connections and reducing network parameters
with weight sharing. For the gravel class, the classification re-
sults of RBF-SVM, JSSSAE, DBN, and CNN are not satis-
fying. Compared with these four algorithms, MSLN-CNN has
increased by 39.2%, 27.3%, 29.7%, and 21.5%, respectively.
For all the classes, the classification accuracy of MSLN-CNN
is over 92%. In particular, MSLN-CNN achieves completely
correct classification results in both meadows and painted metal
sheets classes. Among the seven algorithms, MSLN-CNN ob-
tains the best statistical results in terms of the OA, AA, and
Kappa indexes.

Fig. 5 shows the classification visual maps of the seven algo-
rithms on the Pavia University dataset. As shown in Fig. 5(b)–(f),
many samples belonging to the bitumen class are misclassi-
fied as the asphalt class due to similar spectral characteristics.
The proposed MSLN-CNN method provides a better distinction
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TABLE IV
CLASSIFICATION RESULTS OF RBF-SVM, JSSAE, DBN, CNN, PPF-CNN, 3-DCNN, AND MSLN-CNN ON THE PAVIA UNIVERSITY DATASET

Fig. 5. (a) Ground truth and (b)–(h) classification visual maps of the Pavia
University dataset by RBF-SVM, JSSAE, DBN, PPF-CNN, CNN, 3-DCNN,
and MSLN-CNN, respectively.

between these two classes. Compared with other methods,
MSLN-CNN achieves better regional uniformity in the bare
soil class. In addition, MSLN-CNN obtains better boundary
localization in the meadows class.

3) Classification Results on the Salinas Dataset: In the Sali-
nas dataset, 1% samples from each class are randomly selected
as the training set. The unlabeled samples with the same number
as the training samples are selected for sample augmentation.
The remaining samples are used as the test set. The numbers of
each class in training and test samples are shown in Table V.

The classification results of the seven algorithms are listed
in Table VI. It can be seen that all the seven algorithms exceed
90% classification accuracy in most classes. However, RBF-
SVM, JSSSAE, DBN, CNN, and PPF-CNN misclassify many

TABLE V
16 CLASSES OF THE SALINAS IMAGE AND THE NUMBERS OF

TRAINING AND TEST SAMPLES FOR EACH CLASS

samples in the vinyard_untrained class. Compared with these
methods, MSLN-CNN obviously improves the classification re-
sults. MSLN-CNN achieves absolutely correct classification re-
sults in the fallow and soil_vinyard_develop classes. Compared
with other methods, MSLN-CNN achieves higher classification
accuracy in most classes and obtains better statistical results in
terms of the OA, AA, and Kappa indexes.

Fig. 6 shows the classification visual maps of the seven algo-
rithms on the Salinas datasets. As shown in Fig. 6(b)–(f), many
samples belonging to the grapes_untrained class are misclas-
sified as the vinyard_untrained class by RBF-SVM, JSSSAE,
DBN, CNN, and PPF-CNN. Compared with them, 3-DCNN
and MSLN-CNN provide a better distinction between these
two classes. Moreover, compared with 3-DCNN, MSLN-CNN
achieves better uniformity in fallow and vinyard_vertical_trellis
classes.

D. Investigation on Running Time

Tables VII–IX list the training time and test time for the
seven algorithms on the Indian Pines, Pavia University, and
Salinas datasets, respectively. As shown in Tables VII–IX,
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TABLE VI
CLASSIFICATION RESULTS OF RBF-SVM, JSSAE, DBN, CNN, PPF-CNN, 3-DCNN, AND MSLN-CNN ON THE SALINAS DATASET

Fig. 6. (a) Ground truth and (b)–(h) classification visual maps of the Salinas
dataset by RBF-SVM, JSSAE, DBN, PPF-CNN, CNN, 3-DCNN, and MSLN-
CNN, respectively.

TABLE VII
RUNNING TIME OF RBF-SVM, JSSAE, DBN, CNN, PPF-CNN, 3-DCNN,

AND MSLN-CNN ON THE INDIAN PINES DATASET

TABLE VIII
RUNNING TIME OF RBF-SVM, JSSAE, DBN, CNN, PPF-CNN, 3-DCNN,

AND MSLN-CNN ON THE PAVIA UNIVERSITY DATASET

TABLE IX
RUNNING TIME OF RBF-SVM, JSSAE, DBN, CNN, PPF-CNN,

3-DCNN, AND MSLN-CNN ON THE SALINAS DATASET
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compared with RBF-SVM, six deep learning-based methods,
JSSSAE, DBN, PPF-CNN, CNN, 3-DCNN, and MSLN-CNN,
cost more training time on the construction of deep network
models. JSSSAE and DBN are faster on the training time than
PPF-CNN, CNN, 3-DCNN, and MSLN-CNN due to the input
of 1-D vector. Among all the comparison methods, PPF-CNN
and 3-DCNN are time-consuming on the training time. A 3-
DCNN takes more time due to the increasing parameters of the
network caused by 3-D convolution operations. PPF-CNN takes
more time because of the expansion of a large number of train-
ing samples, especially when the number of training samples is
large. MSLN-CNN is faster on the training time than 3-DCNN
and PPF-CNN.

For the test time, JSSSAE, DBN, CNN, and MSLN-CNN
have more obvious advantages than RBF-SVM, PPF-CNN, and
3-DCNN. PPF-CNN is slower due to the usage of voting strategy
with the surrounding samples. A 3-DCNN takes more time due
to the usage of complex 3-D convolutions. MSLN-CNN only
costs 0.8, 4.0, and 2.3 s on the Indian Pines, Pavia University,
and Salinas datasets, respectively.

E. Sensitivity to the Number of Training Samples

Fig. 7(a)–(c) records the classification results of the seven
algorithms with different ratios of training samples. Specifi-
cally, 1%, 3%, 5%, 7%, and 9% samples from each class on
the Indian Pines datasets, 1%, 2%, 3%, 4%, and 5% on the
Pavia University datasets, and 1%, 1.5%, 2%, 2.5%, and 3%
on the Salinas datasets are randomly selected as the training
samples. Generally, deep learning-based methods are usually
heavily parameterized and a large number of training samples
are required to guarantee the performance. When the ratio of
training samples decreases, the classification performance of
all the seven algorithms declines. Compared with RBF-SVM,
JSSSAE, DBN, CNN, PPF-CNN, and 3-DCNN, MSLN-CNN
consistently provides superior performance with different ratios
of training samples. Additionally, MSLN-CNN declines more
slower than other algorithms with less than 3% training samples
on all the three datasets. Thus, MSLN-CNN is a better choice
when the number of training samples is limited.

F. Performance Analysis to the Challenging Dataset

We have added the experiment on the Pavia University dataset
with 3921 training samples and 42 776 test samples. Table X lists
the number of training and test samples on the Pavia University
dataset. The classification results of the Pavia University dataset
are summarized in Table XI.

As shown in Table XI, classification of the Pavia Univer-
sity dataset with fixed training and test sets is a challenge.
CNN, PPF-CNN, 3-DCNN, and MSLN-CNN are superior to
SVM, JSSSAE, and DBN due to local connection and weight
sharing. Compared with RBF-SVM, JSSSAE, DBN, CNN, and
3-DCNN, PPF-CNN has higher classification accuracy due to
the usage of pixel-pair sample augmentation. Among the seven
methods, MSLN-CNN achieves the best classification results
due to multilayer spatial–spectral feature fusion.

Fig. 7. OA results of RBF-SVM, JSSAE,DBN, CNN, PPF-CNN, 3-DCNN,
and MSLN-CNN with different ratios of training samples on (a) the Indian
Pines, (b) the Pavia University, and (c) the Salinas datasets.

G. Comparison With Other Classification Techniques

In Table XII, four representative methods, the fusion of
deep and shallow features into 3-DCNN (3-DCNN-FDS),
the convolutional recurrent neural network (CRNN) [35], the
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TABLE X
NUMBER OF TRAINING AND TEST SAMPLES ON THE PAVIA UNIVERSITY

DATASET WITH THE AVAILABLE TRAINING AND TEST SETS

TABLE XI
CLASSIFICATION RESULTS BY RBF-SVM, JSSSAE, DBN, CNN, PPF-CNN,

3-DCNN, AND MSLN-CNN ON THE PAVIA UNIVERSITY DATASET

WITH THE AVAILABLE TRAINING AND TEST SETS

spectral–spatial residual network (SSRN) [48], and the multi-
grained network (MugNet) [49], are used for comparison.

As shown in Table XII, compared with CRNN, 3-DCNN-
FDS increases by 4.1%, 2.6%, and 3.4% in terms of OA index
on the three datasets. CRNN uses 1DCNN and RNN to extract
spectrally contextual information. The classification result of
CRNN is determined by integrating the surrounding samples
in the local spatial regions. Compared with CRNN, 3-DCNN
uses 3-D convolution operator to extract joint spatial–spectral
features simultaneously. Compared with CRNN and 3-DCNN,
MSLN-CNN obtains better classification results due to effec-
tive sample augmentation and multilayer spatial–spectral feature
fusion.

Compared with SSRN, MSLN-CNN increases by 4.0%,
0.5%, and 0.3% in terms of OA index on three HSI datasets.
SSRN combines spatial–spectral residual learning and 3-DCNN
for HSI classification. Compared SSRN, MNLS-CNN extracts
complementary information by fusing joint spatial–spectral fea-
tures from shallow to deep layers. MugNet adopts two parallel
branches: spectral MugNet and spatial MugNet. Each branch
uses a semisupervised principal component analysis network
(S2PCANet) based on multigrained scanning. In MugNet, unla-
beled samples are selected to train S2PCANet randomly. Com-
pared with MugNet, MSLN-CNN uses local spatial and nonlocal
spectral constraints to prelabel and select the unlabeled samples.
Only unlabeled samples with high confidences are used for sam-

ple augmentation. MSLN-CNN increases by 7.8%, 4.4%, and
3.5% in terms of OA index on three HSI datasets.

H. Effectiveness Analysis to Data Augmentation in
MSLN-CNN

We have added the experiment to verify the effectiveness
of data augmentation in Table XIII. The comparison meth-
ods are RBF-SVM, JSSSAE, DBN, CNN, and 3-DCNN with
sample augmentation, which are abbreviated as RBF-SVM-
DA, JSSSAE-DA, DBN-DA, CNN-DA, and 3-DCNN-DA,
respectively.

In Table XIII, the performance of the comparison methods has
certain degrees of improvement by adding the proposed sam-
ple augmentation. For deep learning methods, the improvement
is more obvious because of numerous parameters involved in
deep neural networks. Compared with other comparison meth-
ods with sample augmentation, MSLN-CNN still achieves better
classification results.

I. Effectiveness Analysis to Each Step in MSLN-CNN

We have added the experiment to verify the effectiveness
of each step separately in Table XIV. The comparison meth-
ods are the proposed method without data augmentation (PM-
WDA), the proposed method without integration of deep and
shallow features (PM-WIDSF), the proposed method without
fusion of 1-D and 2-D CNNs (PM-WFCNN), and the proposed
method with only spatial CNN with a kernel size of 3 × 3 (PM-
WSCNN3).The experimental results on the Indian Pines, Pavia
University, and Salinas datasets are recorded.

In Table XIV, MSLN-CNN increases by about 1% than PM-
WDA in terms of OA. It can be shown that adding effective data
augmentation improves the classification performance. Com-
pared with PM-WIDSF, MSLN-CNN improves 0.7%, 0.6%,
and 0.8% on three HSI datasets, respectively. It is shown that
complementary information from different layers is beneficial
for classification. Compared with PM-WFCNN, MSLN-CNN
improves 1.2%, 0.8%, and 0.9% on three HSI datasets, respec-
tively. It is shown that joint spatial–spectral information is more
effective than single information for HSI classification. Com-
pared with MSLN-CNN, the OA of PM-WSCNN3 is dropped
by about 0.4%. This is because MSLN-CNN uses the multiscale
feature fusion.

J. Analysis of Free Parameters in MSLN-CNN

There are two important parameters k and r in MSLN-CNN.
k is the number of nearest neighbors in the nonlocal spectral
constraint and local spatial constraint. k controls the number of
prelabeled unlabeled samples. r is the number of PCs in PCA.
Fig. 8 shows the OA results of MSLN-CNN under different
values of k. Fig. 9 shows the classification results under different
numbers k and r.

In Fig. 8, r is fixed as 5. When the parameter k is in the range
of [5, 7], MSLN-CNN obtains better classification results on
three HSI datasets. When the value of k is too large or too small,
the classification accuracy is degraded. When the value of k
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TABLE XII
CLASSIFICATION RESULTS OF 3-DCNN-FDS, CRNN, SSRN, MUGNET, AND MSLN-CNN ON THE INDIAN PINES, PAVIA UNIVERSITY, AND SALINAS DATASETS

TABLE XIII
OA RESULTS OF RBF-SVM-DA, JSSSAE-DA, DBN-DA, CNN-DA,

3-DCNN-DA, AND MSLN-CNN ON THE INDIAN PINES,
PAVIA UNIVERSITY, AND SALINAS DATASETS

TABLE XIV
OA RESULTS OF PM-WDA, PM-WIDSF, PM-WFCNN, PM-WSCNN3,

AND MSLN-CNN ON THE INDIAN PINES, PAVIA UNIVERSITY,
AND SALINAS DATASETS

Fig. 8. Analysis of parameter k in MSLN-CNN.
Fig. 9. Sensitivity analysis of parameters r and k in (a) the Indian Pines,
(b) the Pavia University, and (c) the Salinas datasets.
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is too large, the constraints of sample augment become strict.
Fewer unlabeled samples are selected to prelabel. In this case,
the proposed method has limited ability to alleviate overfitting.
When the value of k is too small, a large number of unlabeled
samples are selected to prelabel due to the loose constraints.
In this case, k nearest samples is too few to extract enough
contextual and structural information for data augmentation.

In Fig. 9, when k is fixed, OA value of MSLN-CNN is obvi-
ously improved with r in the range of [1, 5]. When r exceeds
5, the trend of improvement is not obvious. When the value
of r reaches large enough, more information can be reserved.
Finally, r = 5 is selected.

IV. CONCLUSION

This paper designs a novel MSLN-CNN method for HSI clas-
sification. Compared with existing spatial–spectral CNN meth-
ods, a triple-architecture CNN is constructed in MSLN-CNN.
It effectively utilizes complementary spatial–spectral informa-
tion by fusing the shallow features with detailed information
and the deep features with semantic information. MSLN-CNN
can achieve an end-to-end classification by jointly optimizing
multilayer spatial–spectral feature fusion and classification. Fur-
thermore, MSLN-CNN is a promising method to deal with the
overfitting problem by considering both local spatial constraint
and nonlocal spectral constraint. Experimental results demon-
strated the effectiveness of MSLN-CNN for HSI classification.

In HSIs, the phenomenon of imbalance samples may appear,
when some classes have much fewer samples than other classes.
In the future, the sample imbalance problem will be considered
in MSLN-CNN to improve the classification performance of
the classes with fewer samples. Additionally, we will focus on
the fusion of other deep architectures to further improve the
classification performance of HSIs.
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